Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence

被引:24
|
作者
Antonia, RA [1 ]
Smalley, RJ
Zhou, T
Anselmet, F
Danaila, L
机构
[1] Univ Newcastle, Discipline Mech Engn, Newcastle, NSW 2308, Australia
[2] Univ Leeds, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[3] Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore
[4] Univ Aix Marseille 1, IRPHE, F-13384 Marseille, France
[5] Univ Aix Marseille 2, IRPHE, F-13384 Marseille, France
[6] CORIA, F-76801 St Etienne, France
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An equilibrium similarity analysis is applied to the transport equation for <(deltatheta)(2)>, the second-order temperature structure function, for decaying homogeneous isotropic turbulence. A possible solution is that the temperature variance <theta(2)> decays as x(n), and that the characteristic length scale, identifiable with the Taylor microscale lambda, or equivalently the Corrsin microscale lambda(theta), varies as x(1/2). The turbulent Reynolds and Peclet numbers decay as x((m+1)/2) when m<-1, where m is the exponent which characterizes the decay of the turbulent energy <q(2)>, viz., <q(2)>similar tox(m). Measurements downstream of a grid-heated mandoline combination show that, like <(deltaq)(2)>, <(deltatheta)(2)> satisfies similarity approximately over a significant range of scales r, when lambda, lambda(theta), <q(2)>, and <theta(2)> are used as the normalizing scales. This approximate similarity is exploited to calculate the third-order structure functions. Satisfactory agreement is found between measured and calculated distributions of <deltau(deltaq)(2)> and <deltau(deltatheta)(2)>, where deltau is the longitudinal velocity increment.
引用
收藏
页数:11
相关论文
共 50 条