Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence

被引:24
|
作者
Antonia, RA [1 ]
Smalley, RJ
Zhou, T
Anselmet, F
Danaila, L
机构
[1] Univ Newcastle, Discipline Mech Engn, Newcastle, NSW 2308, Australia
[2] Univ Leeds, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[3] Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore
[4] Univ Aix Marseille 1, IRPHE, F-13384 Marseille, France
[5] Univ Aix Marseille 2, IRPHE, F-13384 Marseille, France
[6] CORIA, F-76801 St Etienne, France
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An equilibrium similarity analysis is applied to the transport equation for <(deltatheta)(2)>, the second-order temperature structure function, for decaying homogeneous isotropic turbulence. A possible solution is that the temperature variance <theta(2)> decays as x(n), and that the characteristic length scale, identifiable with the Taylor microscale lambda, or equivalently the Corrsin microscale lambda(theta), varies as x(1/2). The turbulent Reynolds and Peclet numbers decay as x((m+1)/2) when m<-1, where m is the exponent which characterizes the decay of the turbulent energy <q(2)>, viz., <q(2)>similar tox(m). Measurements downstream of a grid-heated mandoline combination show that, like <(deltaq)(2)>, <(deltatheta)(2)> satisfies similarity approximately over a significant range of scales r, when lambda, lambda(theta), <q(2)>, and <theta(2)> are used as the normalizing scales. This approximate similarity is exploited to calculate the third-order structure functions. Satisfactory agreement is found between measured and calculated distributions of <deltau(deltaq)(2)> and <deltau(deltatheta)(2)>, where deltau is the longitudinal velocity increment.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Inertial similarity of velocity distributions in homogeneous isotropic turbulence
    Tatsumi, T
    Yoshimura, T
    FLUID DYNAMICS RESEARCH, 2004, 35 (02) : 123 - 158
  • [22] Local similarity of velocity distributions in homogeneous isotropic turbulence
    Tatsumi, Tomomasa
    Yoshimura, Takahiro
    FLUID DYNAMICS RESEARCH, 2007, 39 (1-3) : 221 - 266
  • [23] Inertial similarity of velocity distributions in homogeneous isotropic turbulence
    Intl. Institute for Advanced Studies, 9-3 Kizugawadai, Kizu-cho, Kyoto 619-0225, Japan
    不详
    Fluid Dyn. Res., 2 (123-158):
  • [24] On the average settling rate of heavy particles in decaying homogeneous isotropic turbulence
    Yang, C.Y.
    Lei, U.
    Chinese Journal of Mechanics Series A (English Edition), 1998, 14 (03): : 111 - 118
  • [25] Asymptotic analysis of homogeneous isotropic decaying turbulence with unknown initial conditions
    Schaefer, P.
    Gampert, M.
    Goebbert, J. H.
    Gauding, M.
    Peters, N.
    JOURNAL OF TURBULENCE, 2011, 12 (30): : 1 - 20
  • [26] Harmonic analysis filtering techniques for forced and decaying homogeneous isotropic turbulence
    Kareem, Waleed Abdel
    Nabil, Tamer
    Izawa, Seiichiro
    Fukunishi, Yu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (07) : 1059 - 1085
  • [27] Power law of decaying homogeneous isotropic turbulence at low Reynolds number
    Burattini, P.
    Lavoie, P.
    Agrawal, A.
    Djenidi, L.
    Antonia, R. A.
    PHYSICAL REVIEW E, 2006, 73 (06)
  • [28] Effect of particle-particle collision in decaying homogeneous and isotropic turbulence
    Gui, Nan
    Fan, JianRen
    Cen, Kefa
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [29] One-point velocity statistics in decaying homogeneous isotropic turbulence
    Hosokawa, Iwao
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [30] On the kinematics of scalar iso-surfaces in decaying homogeneous, isotropic turbulence
    Blakeley, Brandon C.
    Wang, Weirong
    Riley, James J.
    JOURNAL OF TURBULENCE, 2019, 20 (10): : 661 - 680