Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence

被引:24
|
作者
Antonia, RA [1 ]
Smalley, RJ
Zhou, T
Anselmet, F
Danaila, L
机构
[1] Univ Newcastle, Discipline Mech Engn, Newcastle, NSW 2308, Australia
[2] Univ Leeds, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[3] Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore
[4] Univ Aix Marseille 1, IRPHE, F-13384 Marseille, France
[5] Univ Aix Marseille 2, IRPHE, F-13384 Marseille, France
[6] CORIA, F-76801 St Etienne, France
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An equilibrium similarity analysis is applied to the transport equation for <(deltatheta)(2)>, the second-order temperature structure function, for decaying homogeneous isotropic turbulence. A possible solution is that the temperature variance <theta(2)> decays as x(n), and that the characteristic length scale, identifiable with the Taylor microscale lambda, or equivalently the Corrsin microscale lambda(theta), varies as x(1/2). The turbulent Reynolds and Peclet numbers decay as x((m+1)/2) when m<-1, where m is the exponent which characterizes the decay of the turbulent energy <q(2)>, viz., <q(2)>similar tox(m). Measurements downstream of a grid-heated mandoline combination show that, like <(deltaq)(2)>, <(deltatheta)(2)> satisfies similarity approximately over a significant range of scales r, when lambda, lambda(theta), <q(2)>, and <theta(2)> are used as the normalizing scales. This approximate similarity is exploited to calculate the third-order structure functions. Satisfactory agreement is found between measured and calculated distributions of <deltau(deltaq)(2)> and <deltau(deltatheta)(2)>, where deltau is the longitudinal velocity increment.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence
    Yu, HD
    Girimaji, SS
    Luo, LS
    PHYSICAL REVIEW E, 2005, 71 (01)
  • [12] The Kolmogorov similarity variable and velocity structure functions in isotropic turbulence
    Hosokawa, I
    PROGRESS OF THEORETICAL PHYSICS, 1999, 102 (06): : 1201 - 1206
  • [13] A closure model on velocity structure functions in homogeneous isotropic turbulence
    Le Fang
    Feng Gao
    Applied Mathematics and Mechanics, 2017, 38 : 1627 - 1634
  • [14] A closure model on velocity structure functions in homogeneous isotropic turbulence
    Fang, Le
    Gao, Feng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2017, 38 (11) : 1627 - 1634
  • [15] A closure model on velocity structure functions in homogeneous isotropic turbulence
    Le FANG
    Feng GAO
    AppliedMathematicsandMechanics(EnglishEdition), 2017, 38 (11) : 1627 - 1634
  • [16] Two-space, two-time similarity solution for decaying homogeneous turbulence
    Byers, Clayton P.
    Hultmark, Marcus
    George, William K.
    PHYSICS OF FLUIDS, 2017, 29 (02)
  • [17] The length distribution of streamline segments in homogeneous isotropic decaying turbulence
    Schaefer, P.
    Gampert, M.
    Peters, N.
    PHYSICS OF FLUIDS, 2012, 24 (04)
  • [18] The Polymer Effect on Nonlinear Processes in Decaying Homogeneous Isotropic Turbulence
    Cai, Wei-Hua
    Li, Feng-Chen
    Zhang, Hong-Na
    Wang, Yue
    Wang, Lu
    ADVANCES IN MECHANICAL ENGINEERING, 2013,
  • [19] THE INFLUENCE OF POLYMERS ON COHERENT STRUCTURES IN DECAYING HOMOGENEOUS ISOTROPIC TURBULENCE
    Cai, Wei-Hua
    Zhang, Hong-Na
    Li, Feng-Chen
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE - 2010 - VOL 1, PTS A-C, 2010, : 2025 - 2032
  • [20] DNS study of decaying homogeneous isotropic turbulence with polymer additives
    Cai, W. -H.
    Li, F. -C.
    Zhang, H. -N.
    JOURNAL OF FLUID MECHANICS, 2010, 665 : 334 - 356