Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence

被引:24
|
作者
Antonia, RA [1 ]
Smalley, RJ
Zhou, T
Anselmet, F
Danaila, L
机构
[1] Univ Newcastle, Discipline Mech Engn, Newcastle, NSW 2308, Australia
[2] Univ Leeds, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[3] Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore
[4] Univ Aix Marseille 1, IRPHE, F-13384 Marseille, France
[5] Univ Aix Marseille 2, IRPHE, F-13384 Marseille, France
[6] CORIA, F-76801 St Etienne, France
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An equilibrium similarity analysis is applied to the transport equation for <(deltatheta)(2)>, the second-order temperature structure function, for decaying homogeneous isotropic turbulence. A possible solution is that the temperature variance <theta(2)> decays as x(n), and that the characteristic length scale, identifiable with the Taylor microscale lambda, or equivalently the Corrsin microscale lambda(theta), varies as x(1/2). The turbulent Reynolds and Peclet numbers decay as x((m+1)/2) when m<-1, where m is the exponent which characterizes the decay of the turbulent energy <q(2)>, viz., <q(2)>similar tox(m). Measurements downstream of a grid-heated mandoline combination show that, like <(deltaq)(2)>, <(deltatheta)(2)> satisfies similarity approximately over a significant range of scales r, when lambda, lambda(theta), <q(2)>, and <theta(2)> are used as the normalizing scales. This approximate similarity is exploited to calculate the third-order structure functions. Satisfactory agreement is found between measured and calculated distributions of <deltau(deltaq)(2)> and <deltau(deltatheta)(2)>, where deltau is the longitudinal velocity increment.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Similarity of energy structure functions in decaying homogeneous isotropic turbulence
    Antonia, RA
    Smalley, RJ
    Zhou, T
    Anselmet, F
    Danaila, L
    JOURNAL OF FLUID MECHANICS, 2003, 487 : 245 - 269
  • [2] Longitudinal and transverse structure functions in decaying nearly homogeneous and isotropic turbulence
    Ahmad, Imtiaz
    Lu Zhi-Ming
    Liu Yu-Lu
    CHINESE PHYSICS B, 2014, 23 (01)
  • [3] Longitudinal and transverse structure functions in decaying nearly homogeneous and isotropic turbulence
    Imtiaz Ahmad
    卢志明
    刘宇陆
    Chinese Physics B, 2014, (01) : 276 - 282
  • [4] On the self-similarity of line segments in decaying homogeneous isotropic turbulence
    Gauding, Michael
    Wang, Lipo
    Goebbert, Jens Henrik
    Bode, Mathis
    Danaila, Luminita
    Varea, Emilien
    COMPUTERS & FLUIDS, 2019, 180 : 206 - 217
  • [5] Similarity of decaying isotropic turbulence with a passive scalar
    Antonia, RA
    Orlandi, P
    JOURNAL OF FLUID MECHANICS, 2004, 505 : 123 - 151
  • [6] VELOCITY AUTOCORRELATIONS OF DECAYING ISOTROPIC HOMOGENEOUS TURBULENCE
    HUANG, MJ
    LEONARD, A
    PHYSICS OF FLUIDS, 1995, 7 (10) : 2455 - 2464
  • [7] TEMPERATURE STRUCTURE FUNCTIONS IN ISOTROPIC TURBULENCE
    HOSOKAWA, I
    PHYSICAL REVIEW A, 1991, 43 (12): : 6735 - 6739
  • [8] Multiscale similarity of isotropic homogeneous turbulence
    Huang, MJ
    FUNDAMENTAL PROBLEMATIC ISSUES IN TURBULENCE, 1999, : 365 - 378
  • [9] Statistical Simulation of Decaying and Forced Homogeneous Isotropic Turbulence
    Fei, Fei
    Fan, Jing
    Xu, Chunxiao
    Song, Yang
    Liu, Zhaohui
    PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2014, 1628 : 1356 - 1362
  • [10] Dependence of decaying homogeneous isotropic turbulence on inflow conditions
    Valente, P. C.
    Vassilicos, J. C.
    PHYSICS LETTERS A, 2012, 376 (04) : 510 - 514