Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence

被引:24
作者
Antonia, RA [1 ]
Smalley, RJ
Zhou, T
Anselmet, F
Danaila, L
机构
[1] Univ Newcastle, Discipline Mech Engn, Newcastle, NSW 2308, Australia
[2] Univ Leeds, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[3] Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore
[4] Univ Aix Marseille 1, IRPHE, F-13384 Marseille, France
[5] Univ Aix Marseille 2, IRPHE, F-13384 Marseille, France
[6] CORIA, F-76801 St Etienne, France
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An equilibrium similarity analysis is applied to the transport equation for <(deltatheta)(2)>, the second-order temperature structure function, for decaying homogeneous isotropic turbulence. A possible solution is that the temperature variance <theta(2)> decays as x(n), and that the characteristic length scale, identifiable with the Taylor microscale lambda, or equivalently the Corrsin microscale lambda(theta), varies as x(1/2). The turbulent Reynolds and Peclet numbers decay as x((m+1)/2) when m<-1, where m is the exponent which characterizes the decay of the turbulent energy <q(2)>, viz., <q(2)>similar tox(m). Measurements downstream of a grid-heated mandoline combination show that, like <(deltaq)(2)>, <(deltatheta)(2)> satisfies similarity approximately over a significant range of scales r, when lambda, lambda(theta), <q(2)>, and <theta(2)> are used as the normalizing scales. This approximate similarity is exploited to calculate the third-order structure functions. Satisfactory agreement is found between measured and calculated distributions of <deltau(deltaq)(2)> and <deltau(deltatheta)(2)>, where deltau is the longitudinal velocity increment.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 1958, 4288 NACA
[2]  
Antonia R. A., 2003, Applied Mechanics Review, V56, P615, DOI 10.1115/1.1581885
[3]   Similarity of energy structure functions in decaying homogeneous isotropic turbulence [J].
Antonia, RA ;
Smalley, RJ ;
Zhou, T ;
Anselmet, F ;
Danaila, L .
JOURNAL OF FLUID MECHANICS, 2003, 487 :245-269
[4]  
ANTONIA RA, 2003, TURBULENCE HEAT MASS, V4, P131
[5]   DECAY OF VORTICITY IN ISOTROPIC TURBULENCE [J].
BATCHELOR, GK ;
TOWNSEND, AA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1947, 190 (1023) :534-550
[6]  
CHASSAING P, 2002, VARIABLE DENSITY FLU, P167
[7]   SIMPLE EULERIAN TIME CORRELATION OF FULL- AND NARROW-BAND VELOCITY SIGNALS IN GRID-GENERATED, ISOTROPIC TURBULENCE [J].
COMTEBELLOT, G ;
CORRSIN, S .
JOURNAL OF FLUID MECHANICS, 1971, 48 (JUL28) :273-+
[8]   USE OF A CONTRACTION TO IMPROVE ISOTROPY OF GRID-GENERATED TURBULENCE [J].
COMTEBELLOT, G ;
CORRSIN, S .
JOURNAL OF FLUID MECHANICS, 1966, 25 :657-+
[9]   THE DECAY OF ISOTROPIC TEMPERATURE FLUCTUATIONS IN AN ISOTROPIC TURBULENCE [J].
CORRSIN, S .
JOURNAL OF THE AERONAUTICAL SCIENCES, 1951, 18 (06) :417-423
[10]   A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence [J].
Danaila, L ;
Anselmet, F ;
Zhou, T ;
Antonia, RA .
JOURNAL OF FLUID MECHANICS, 1999, 391 :359-372