Univariate measurement error selection likelihood for variable selection of additive model

被引:0
作者
Ma, Xiaoyu [1 ]
Lin, Lu [1 ,2 ]
机构
[1] Shandong Univ, Zhongtai Secur Inst Financial Studies, Jinan 250100, Peoples R China
[2] Qufu Normal Univ, Sch Stat, Qufu, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive model; variable selection; measurement error selection likelihood; selection consistency; NONCONCAVE PENALIZED LIKELIHOOD; NONPARAMETRIC REGRESSION; ADAPTIVE LASSO;
D O I
10.1080/02331888.2021.1981327
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a measurement error selection likelihood to select important variables and estimate additive components simultaneously in a high-dimensional additive model. Although the model contains multi-variates, the proposed estimation is a type of univariate nonparametric form. This format matches the feature of the additive structure in the sense that both the model and the nonparametric estimation are of univariate nonparametric feature, essentially. Consequently, the variable selection is valid even if the number of variables is large. The selection consistency is obtained and finite performances are illustrated via Monte Carlo experiments.
引用
收藏
页码:875 / 893
页数:19
相关论文
共 29 条
  • [1] Regularization of wavelet approximations - Rejoinder
    Antoniadis, A
    Fan, J
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 964 - 967
  • [2] Sparsity oracle inequalities for the Lasso
    Bunea, Florentina
    Tsybakov, Alexandre
    Wegkamp, Marten
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 169 - 194
  • [3] Buonaccorsi JP, 2010, INTERD STAT, P1
  • [4] Carroll R. J., 2006, MEASUREMENT ERROR NO
  • [5] Nonconcave penalized likelihood with a diverging number of parameters
    Fan, JQ
    Peng, H
    [J]. ANNALS OF STATISTICS, 2004, 32 (03) : 928 - 961
  • [6] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360
  • [7] A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS
    FRANK, IE
    FRIEDMAN, JH
    [J]. TECHNOMETRICS, 1993, 35 (02) : 109 - 135
  • [8] Fuller W. A., 1987, Measurement Error Models
  • [9] Grandvalet Y., 1997, Artificial Neural Networks - ICANN '97. 7th International Conference Proceedings, P463, DOI 10.1007/BFb0020198
  • [10] Hastie T, 2009, ELEMENTS STAT LEARNI, DOI [10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-84858-7, DOI 10.1007/B94608]