Prabhakar-like fractional viscoelasticity

被引:126
作者
Giusti, Andrea [1 ,2 ,3 ]
Colombaro, Ivano [4 ]
机构
[1] Univ Bologna, Dept Phys & Astron, Via Irnerio 46, Bologna, Italy
[2] INFN, Sez Bologna, IS FLAG Viale B Pichat 6-2, I-40127 Bologna, Italy
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr, Theresienstr 37, D-80333 Munich, Germany
[4] Univ Pompeu Fabra, Dept Informat & Commun Technol, C Roc Boronat 138, Barcelona 08018, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 56卷
关键词
Viscoelasticity; Prabhakar derivative; Mittag-Leffler functions; RELAXATION; MODELS; FLUID;
D O I
10.1016/j.cnsns.2017.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present a linear viscoelastic model based on Prabhakar fractional operators. In particular, we propose a modification of the classical fractional Maxwell model, in which we replace the Caputo derivative with the Prabhakar one. Furthermore, we also discuss how to recover a formal equivalence between the new model and the known classical models of linear viscoelasticity by means of a suitable choice of the parameters in the Prabhakar derivative. Moreover, we also underline an interesting connection between the theory of Prabhakar fractional integrals and the recently introduced Caputo-Fabrizio differential operator. (C) 2017 Elsevier B.V. Allrights reserved.
引用
收藏
页码:138 / 143
页数:6
相关论文
共 28 条
[1]  
[Anonymous], TRENDS APPL MATH MEC
[2]  
[Anonymous], ARXIV13071696
[3]  
Bagley R., 2007, FRACT CALC APPL ANAL, V10, P123
[4]  
Caputo M., 2015, Progress Fract. Diff. Appl, V1, P73, DOI DOI 10.12785/PFDA/010201
[5]   On transient waves in linear viscoelasticity [J].
Colombaro, Ivano ;
Giusti, Andrea ;
Mainardi, Francesco .
WAVE MOTION, 2017, 74 :191-212
[6]   On the propagation of transient waves in a viscoelastic Bessel medium [J].
Colombaro, Ivano ;
Giusti, Andrea ;
Mainardi, Francesco .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03)
[7]   A class of linear viscoelastic models based on Bessel functions [J].
Colombaro, Ivano ;
Giusti, Andrea ;
Mainardi, Francesco .
MECCANICA, 2017, 52 (4-5) :825-832
[8]   Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics [J].
de Oliveira, E. Capelas ;
Mainardi, F. ;
Vaz, J., Jr. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :161-171
[9]   FRACTIONAL MAXWELL FLUID WITH FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL [J].
Gao, Feng ;
Yang, Xiao-Jun .
THERMAL SCIENCE, 2016, 20 :S871-S877
[10]   Hilfer-Prabhakar derivatives and some applications [J].
Garra, Roberto ;
Gorenflo, Rudolf ;
Polito, Federico ;
Tomovski, Zivorad .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :576-589