Synchronizing chaos by driving parameter

被引:24
|
作者
Yang, SP [1 ]
Niu, YY [1 ]
Tian, G [1 ]
Yuan, GY [1 ]
Zhang, S [1 ]
机构
[1] Hebei Normal Univ, Dept Phys, Shijiazhuang 050091, Peoples R China
关键词
chaos; synchronization; driving parameter method; anti-phase synchronization;
D O I
10.7498/aps.50.619
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The method of synchronizing chaos based on driving a certain parameter of chaotic systems using the chaotic signal outside is proposed. The Logistic map and the Lorenz systems are taken as two typical examples. The simulation results show that two identical chaotic systems can be synchronized completely when the change scope of the parameter driven is large enough. On the other hand, the different synchronization states depending on the initial conditions and the controlling parameter are found in Lorenz systems.
引用
收藏
页码:619 / 623
页数:5
相关论文
共 13 条
  • [1] Synchronization of switching processes in coupled Lorenz systems
    Anishchenko, VS
    Silchenko, AN
    Khovanov, IA
    [J]. PHYSICAL REVIEW E, 1998, 57 (01): : 316 - 322
  • [2] Synchronization of symmetric chaotic systems
    GonzalezMiranda, JM
    [J]. PHYSICAL REVIEW E, 1996, 53 (06) : 5656 - 5669
  • [3] Approach to the chaotic synchronized state of some driving methods
    Guemez, J
    Martin, C
    Matias, MA
    [J]. PHYSICAL REVIEW E, 1997, 55 (01) : 124 - 134
  • [4] GENERAL-APPROACH FOR CHAOTIC SYNCHRONIZATION WITH APPLICATIONS TO COMMUNICATION
    KOCAREV, L
    PARLITZ, U
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (25) : 5028 - 5031
  • [5] SYNCHRONIZATION OF CHAOTIC TRAJECTORIES USING CONTROL
    LAI, YC
    GREBOGI, C
    [J]. PHYSICAL REVIEW E, 1993, 47 (04): : 2357 - 2360
  • [6] Impulsive synchronization of Rossler system
    Liu, F
    Mu, ZL
    Qiu, ZL
    [J]. ACTA PHYSICA SINICA, 1999, 48 (07) : 1198 - 1203
  • [7] Liu ZH, 1997, PHYS REV E, V55, P6651, DOI [10.1103/PhysRevE.55.6651y, 10.1103/PhysRevE.55.6651]
  • [8] Synchronizing chaos by driving of discrete chaotic signal
    Luo, XS
    Fang, JQ
    Wang, LH
    Kong, LJ
    Weng, JQ
    [J]. ACTA PHYSICA SINICA, 1999, 48 (11) : 2022 - 2029
  • [9] SYNCHRONIZATION IN CHAOTIC SYSTEMS
    PECORA, LM
    CARROLL, TL
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (08) : 821 - 824
  • [10] CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK
    PYRAGAS, K
    [J]. PHYSICS LETTERS A, 1992, 170 (06) : 421 - 428