Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells

被引:29
|
作者
Li, Mingyu [1 ,2 ]
Chen, Shiwu [1 ]
Zhao, Xinzhao [1 ]
Xiong, Kao [3 ]
Wang, Bo [1 ]
Shah, Usman Ali [1 ]
Gao, Liang [1 ]
Lan, Xinzheng [3 ]
Zhang, Jianbing [3 ]
Hsu, Hsien-Yi [4 ,5 ]
Tang, Jiang [1 ,3 ]
Song, Haisheng [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Wuhan Natl Lab Optoelect WNLO, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wenzhou Adv Mfg Technol Res Inst, Wenzhou, Zhejiang, Peoples R China
[3] Huazhong Univ Sci & Technol HUST, Sch Optic & Elect Informat, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[4] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong 999077, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon Tong, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
colloidal quantum dots; energy level matching; infrared solar cells; lead sulfide; sputtered ZnO; PERFORMANCE; PHOTOVOLTAICS; SB2SE3; FILMS;
D O I
10.1002/smll.202105495
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Infrared solar cells (IRSCs) can supplement silicon or perovskite SCs to broaden the utilization of the solar spectrum. As an ideal infrared photovoltaic material, PbS colloidal quantum dots (CQDs) with tunable bandgaps can make good use of solar energy, especially the infrared region. However, as the QD size increases, the energy level shrinking and surface facet evolution makes us reconsider the matching charge extraction contacts and the QD passivation strategy. Herein, different to the traditional sol-gel ZnO layer, energy-level aligned ZnO thin film from a magnetron sputtering method is adopted for electron extraction. In addition, a modified hybrid ligand recipe is developed for the facet passivation of large size QDs. As a result, the champion IRSC delivers an open circuit voltage of 0.49 V and a power conversion efficiency (PCE) of 10.47% under AM1.5 full-spectrum illumination, and the certified PCE is over 10%. Especially the 1100 nm filtered efficiency achieves 1.23%. The obtained devices also show high storage stability. The present matched electron extraction and QD passivation strategies are expected to highly booster the IR conversion yield and promote the fast development of new conception QD optoelectronics.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Cao, Yiming
    Stavrinadis, Alexandros
    Lasanta, Tania
    So, David
    Konstantatos, Gerasimos
    NATURE ENERGY, 2016, 1
  • [42] Mediating Colloidal Quantum Dot/Organic Semiconductor Interfaces for Efficient Hybrid Solar Cells
    Kim, Byeongsu
    Baek, Se-Woong
    Kim, Changjo
    Kim, Junho
    Lee, Jung-Yong
    ADVANCED ENERGY MATERIALS, 2022, 12 (02)
  • [43] Interfacial Heterojunction Enables High Efficient PbS Quantum Dot Solar Cells
    Zhang, Li
    Chen, Yong
    Cao, Shuang
    Yuan, Defei
    Tang, Xu
    Wang, Dengke
    Gao, Yajun
    Zhang, Junjie
    Zhao, Yongbiao
    Yang, Xichuan
    Lu, Zhenghong
    Fan, Quli
    Sun, Bin
    ADVANCED SCIENCE, 2024, 11 (26)
  • [44] Cascaded band alignments of PbS heterojunction layers for improved performance of PbS quantum dot solar cells
    Park, Dasom
    Yim, Sanggyu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 208
  • [45] Colloidal quantum dot based solar cells: from materials to devices
    Jung Hoon Song
    Sohee Jeong
    Nano Convergence, 4
  • [46] Colloidal quantum dot based solar cells: from materials to devices
    Song, Jung Hoon
    Jeong, Sohee
    NANO CONVERGENCE, 2017, 4
  • [47] Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
    Neo, Darren C. J.
    Cheng, Cheng
    Stranks, Samuel D.
    Fairclough, Simon M.
    Kim, Judy S.
    Kirkland, Angus I.
    Smith, Jason M.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    CHEMISTRY OF MATERIALS, 2014, 26 (13) : 4004 - 4013
  • [48] Colloidal quantum dot materials for infrared optoelectronics
    Arinze, Ebuka S.
    Nyirjesy, Gabrielle
    Cheng, Yan
    Palmquist, Nathan
    Thon, Susanna M.
    INFRARED REMOTE SENSING AND INSTRUMENTATION XXIII, 2015, 9608
  • [49] Organic ligand complementary passivation to Colloidal-quantum-dot surface enables efficient infrared solar cells
    Li, Mingyu
    Zhao, Xinzhao
    Zhang, Afei
    Wang, Bo
    Yang, Yang
    Xu, Shaoheng
    Hu, Qingsong
    Liang, Guijie
    Xiao, Zewen
    Gao, Liang
    Zhang, Jianbing
    Hsu, Hsien-Yi
    Song, Haisheng
    Tang, Jiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [50] Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells
    Hu, Lilei
    Mandelis, Andreas
    Lan, Xinzheng
    Melnikov, Alexander
    Hoogland, Sjoerd
    Sargent, Edward H.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 : 155 - 165