Dynamics of cracks in disordered materials

被引:12
作者
Bonamy, Daniel [1 ]
机构
[1] Univ Paris Saclay, CNRS, CEA Saclay, SPEC,CEA, F-91191 Gif Sur Yvette, France
关键词
Fracture; Disordered solids; Crackling; Scaling laws; Dynamic transition; Instabilities; Stochastic approach; BRITTLE MATERIALS; HETEROGENEOUS MEDIA; ACOUSTIC-EMISSION; MOVING CRACK; FRACTURE; PROPAGATION; FAILURE; PERTURBATION; EARTHQUAKES; FRONT;
D O I
10.1016/j.crhy.2017.09.012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Predicting when rupture occurs or cracks progress is a major challenge in numerous fields of industrial, societal, and geophysical importance. It remains largely unsolved: stress enhancement at cracks and defects, indeed, makes the macroscale dynamics extremely sensitive to the microscale material disorder. This results in giant statistical fluctuations and non-trivial behaviors upon upscaling, difficult to assess via the continuum approaches of engineering. These issues are examined here. We will see: - how linear elastic fracture mechanics sidetracks the difficulty by reducing the problem to that of the propagation of a single crack in an effective material free of defects; - how slow cracks sometimes display jerky dynamics, with sudden violent events incompatible with the previous approach, and how some paradigms of statistical physics can explain it; - how abnormally fast cracks sometimes emerge due to the formation of microcracks at very small scales. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:297 / 313
页数:17
相关论文
共 90 条
[1]   Dynamic Stability of Crack Fronts: Out-Of-Plane Corrugations [J].
Adda-Bedia, Mokhtar ;
Arias, Rodrigo E. ;
Bouchbinder, Eran ;
Katzav, Eytan .
PHYSICAL REVIEW LETTERS, 2013, 110 (01)
[2]   IMPACT-INDUCED TENSIONAL FAILURE IN ROCK [J].
AHRENS, TJ ;
RUBIN, AM .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1993, 98 (E1) :1185-1203
[3]  
[Anonymous], 1920, The phenomena of Rupture and Flow in Solids
[4]   Fracture processes observed with a cryogenic detector [J].
Astrom, J. ;
Di Stefano, P. C. F. ;
Proebst, F. ;
Stodolsky, L. ;
Timonen, J. ;
Bucci, C. ;
Cooper, S. ;
Cozzini, C. ;
Feilitzsch, F. v. ;
Kraus, H. ;
Marchese, J. ;
Meier, O. ;
Nagel, U. ;
Ramachers, Y. ;
Seidel, W. ;
Sisti, M. ;
Uchaikin, S. ;
Zerle, L. .
PHYSICS LETTERS A, 2006, 356 (4-5) :262-266
[5]   Unified scaling law for earthquakes [J].
Bak, P ;
Christensen, K ;
Danon, L ;
Scanlon, T .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4-178501
[6]   Fluctuations of Global Energy Release and Crackling in Nominally Brittle Heterogeneous Fracture [J].
Bares, J. ;
Hattali, M. L. ;
Dalmas, D. ;
Bonamy, D. .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[7]   Crackling versus Continuumlike Dynamics in Brittle Failure [J].
Bares, J. ;
Barbier, L. ;
Bonamy, D. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[8]  
Bares J., AFTERSHOCK SEQUENCES
[9]   Nominally brittle cracks in inhomogeneous solids: from microstructural disorder to continuum-level scale [J].
Bares, Jonathan ;
Barlet, Marina ;
Rountree, Cindy L. ;
Barbier, Luc ;
Bonamy, Daniel .
FRONTIERS IN PHYSICS, 2014, 2 (02) :1-14
[10]   Statistical Similarity between the Compression of a Porous Material and Earthquakes [J].
Baro, Jordi ;
Corral, Alvaro ;
Illa, Xavier ;
Planes, Antoni ;
Salje, Ekhard K. H. ;
Schranz, Wilfried ;
Soto-Parra, Daniel E. ;
Vives, Eduard .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)