Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3 *

被引:0
作者
Li, Zhongxu [1 ,4 ]
Huang, Kai [1 ,5 ]
Ji, Yanda [2 ,3 ]
Cheng, Yang [1 ,4 ]
Zhao, Xiaomeng [1 ,5 ]
Zhou, Min [1 ]
You, Tiangui [1 ]
Zhang, Shibin [1 ]
Ou, Xin [1 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, MIIT Key Lab Aerosp Informat Mat & Phys, Nanjing 211106, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 211106, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[5] Shanghai Novel Silicon Integrat Technol Co Ltd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
x-ray diffraction (XRD); implantation; strain; piezoelectric; SURFACE; ARCHITECTURE; SUBSTRATE; GROWTH;
D O I
10.1088/1674-1056/ac1416
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The monocrystalline LiNbO3 (LN) and LiTaO3 (LT) plates have been qualified as a kind of material platform for high performance RF filter that is considerable for the 5G communication. LN and LT thin films are usually transferred on handle wafers by combining ion-slicing and wafer bonding technique to form a piezoelectric on insulator (POI) substrate. The ion implantation is a key process and the implantation-induced strain is essential for the layer transfer. Here, we reported the strain profile of ion implanted rotated Y-cut LN and LT. The ion implantation generates the out-of-plane tensile strain of the sample surface and (006) plane, while both the tensile and compressive strain are observed on the (030) plane. The implanted ions redistributed due to the anisotropy of LN and LT, and induce the main tensile normal to the (006) plane. Meanwhile, the (030) planes are contracted due to the Poisson effect with the interstitial ions disturbing and mainly show a compressive strain profile.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
Afif O., 2014, IEEE COMMUN MAG, V26
[2]  
Arun AMG., 2015, J ELECT ELECT ENG AM, V3, P22
[3]   Evolution from point to extended defects in ion implanted silicon [J].
Benton, JL ;
Libertino, S ;
Kringhoj, P ;
Eaglesham, DJ ;
Poate, JM ;
Coffa, S .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (01) :120-125
[4]  
Bhugra H., 2017, PIEZOELECTRIC MEMS R, P99
[5]   Nuclear and electronic energy loss synergy in the process of damage growth in ion implanted LiNbO3 [J].
Bianconi, M. ;
Argiolas, N. ;
Bazzan, M. ;
Bentini, G. G. ;
Chiarini, M. ;
Cerutti, A. ;
Mazzoldi, P. ;
Pennestri, G. ;
Sada, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 249 :122-125
[6]   XRD investigation of the strain/stress state of ion-irradiated crystals [J].
Debelle, Aurelien ;
Declemy, Alain .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (09) :1460-1465
[7]  
Emad A, 2019, PROC IEEE MICR ELECT, P282, DOI [10.1109/MEMSYS.2019.8870894, 10.1109/memsys.2019.8870894]
[8]   MeV ion-induced strain at nanoisland-semiconductor surface and interfaces [J].
Ghatak, J ;
Satpati, B ;
Umananda, M ;
Satyam, PV ;
Akimoto, K ;
Ito, K ;
Emoto, T .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 244 (01) :64-68
[9]  
Gorisse Marie, 2018, 2018 IEEE International Ultrasonics Symposium (IUS), DOI 10.1109/ULTSYM.2018.8579660
[10]   ION-IMPLANTATION INTO LINBO3 [J].
GOTZ, G ;
KARGE, H .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, 1983, 209 (MAY) :1079-1088