Deep Learning for Smart Sewer Systems: Assessing Nonfunctional Requirements

被引:14
作者
Gudaparthi, Hemanth [1 ]
Johnson, Reese [2 ]
Challa, Harshitha [1 ]
Niu, Nan [1 ]
机构
[1] Univ Cincinnati, Cincinnati, OH 45221 USA
[2] Metropolitan Sewer Dist Greater Cincinnati, Cincinnati, OH USA
来源
2020 IEEE/ACM 42ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN SOCIETY (ICSE-SEIS 2021) | 2020年
基金
美国国家科学基金会;
关键词
Water management; smart sewer systems; recurrent neural network; nonfunctional requirements; robustness; metamorphic testing;
D O I
10.1145/3377815.3381379
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Combined sewer overflows represent significant risks to human health as untreated water is discharged to the environment. Municipalities recently began collecting large amounts of water-related data and considering the adoption of deep learning solutions like recurrent neural network (RNN) for overflow prediction. In this paper, we contribute a novel metamorphic relation to characterize RNN robustness in the presence of missing data. We show how this relation drives automated testing of three implementation variants: LSTM, GRU, and IndRNN thereby uncovering deficiencies and suggesting more robust solutions for overflow prediction.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1990, IEEE Standard 610.12-1990, DOI DOI 10.1109/IEEESTD.1990.101064
[2]  
Francois Chollet., 2015, KERAS PYTHON DEEP LE
[3]  
Li Shuai, 2018, INDRNN BUILDING LONG
[4]  
Murphy Christian, 2008, SEKE 2008. The 20th International Conference Proceedings on Software Engineering & Knowledge Engineering, P867
[5]   Enterprise Information Systems Architecture-Analysis and Evaluation [J].
Niu, Nan ;
Xu, Li Da ;
Bi, Zhuming .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) :2147-2154
[6]  
Niu N, 2009, LECT NOTES COMPUT SC, V5560, P83, DOI 10.1007/978-3-642-03764-1_3
[7]   Deep learning in neural networks: An overview [J].
Schmidhuber, Juergen .
NEURAL NETWORKS, 2015, 61 :85-117
[8]  
United States Environmental Protection Agency, 2018, NAT POLL DISCH ELIM
[9]  
United States Environmental Protection Agency, 2014, REP C IMP CONTR CSOS
[10]  
Zhang NA, 2011, LECT NOTES COMPUT SC, V6675, P610, DOI 10.1007/978-3-642-21105-8_71