A Novel Adaptive Hybrid Fusion Network for Multiresolution Remote Sensing Images Classification

被引:30
作者
Ma, Wenping [1 ]
Shen, Jianchao [1 ]
Zhu, Hao [1 ]
Zhang, Jun [1 ]
Zhao, Jiliang [1 ]
Hou, Biao [1 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Sch Artificial Intelligence, Xian 710071, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Spatial resolution; Pansharpening; Data mining; Remote sensing; Fuses; Data integration; Data difference reduction; deep learning (DL); feature fusion; multiresolution image classification; remote sensing; MULTISPECTRAL DATA;
D O I
10.1109/TGRS.2021.3062142
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid development of earth observation technology, panchromatic (PAN) and multispectral (MS) images have also become easier to obtain. The multiresolution classification of PAN and MS images as a basic MS image analysis task has become a research hotspot. The main challenge in this field is how to process data and extract features to improve classification accuracy effectively. In this article, we design a novel adaptive hybrid fusion network (AHF-Net) for multiresolution remote sensing image classification. It includes two parts: data fusion and feature fusion. In the data fusion part, we propose an adaptive weighted intensity-hue-saturation (AWIHS) strategy, which can reduce the difference between MS and PAN images by adaptively adding each otherx2019;s unique information from the perspective of information sharing. In the feature fusion part, starting from the second-order correlation of features, we propose a correlation-based attention feature fusion (CAFF) module. It can improve the discrimination of fusion features by adaptively determining the fusion coefficient according to the importance of the input feature channel. Based on AWIHS and CAFF, inspired by the idea of feature pyramid, we combine the multilevel feature fusion and the dual-branch residual network as the backbone network of AHF-Net. By combining AWIHS and CAFF modules with the backbone network, our AHF-Net can effectively improve the classification accuracy of multiresolution remote sensing images. The effectiveness of the proposed algorithm has been verified on multiple data sets. Our code and model are available at <uri>https://github.com/1826133674/AHF-Net</uri>.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Multilevel Feature Fusion Networks With Adaptive Channel Dimensionality Reduction for Remote Sensing Scene Classification
    Wang, Xin
    Duan, Lin
    Shi, Aiye
    Zhou, Huiyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [32] Remote Sensing Scene Classification Based on Multibranch Fusion Attention Network
    Shi, Jiacheng
    Liu, Wei
    Shan, Haoyu
    Li, Erzhu
    Li, Xing
    Zhang, Lianpeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [33] TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images
    Li, Qingyang
    Zhong, Ruofei
    Du, Xin
    Du, Yu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Adaptive Differentiation Siamese Fusion Network for Remote Sensing Change Detection
    Zhang, Yunzuo
    Zhen, Jiawen
    Liu, Ting
    Yang, Yuehui
    Cheng, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [35] A Lightweight and Multiscale Network for Remote Sensing Image Scene Classification
    Bai, Lin
    Liu, Qingxin
    Li, Cuiling
    Zhu, Chunlin
    Ye, Zhen
    Xi, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] STANET: SPATIOTEMPORAL ADAPTIVE NETWORK FOR REMOTE SENSING IMAGES
    Hu, Chenlu
    Ma, Mengting
    Ma, Xiaowen
    Zhang, Huanting
    Wu, Dun
    Gao, Guang
    Zhang, Wei
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3429 - 3433
  • [37] Fusion of Deep Learning Models for Improving Classification Accuracy of Remote Sensing Images
    Deepan, P.
    Sudha, L. R.
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (05): : 189 - 201
  • [38] Remote Sensing Panchromatic Images Classification Using Moment Features and Decision Fusion
    Seresht, Mohammad Karimi
    Ghassemian, Hassan
    2016 24TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2016, : 1683 - 1688
  • [39] Multiscale Feature Adaptive Fusion for Object Detection in Optical Remote Sensing Images
    Lv, Hao
    Qian, Weixing
    Chen, Tianxiao
    Yang, Han
    Zhou, Xuecheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] Network Pruning for Remote Sensing Images Classification Based on Interpretable CNNs
    Guo, Xianpeng
    Hou, Biao
    Ren, Bo
    Ren, Zhongle
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60