Long-distance pollinator flights and pollen dispersal between populations of Delphinium nuttallianum

被引:93
|
作者
Schulke, B
Waser, NM [1 ]
机构
[1] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA
[2] Rocky Mt Biol Labs, Crested Butte, CO 81224 USA
基金
美国国家科学基金会;
关键词
conservation; fragmentation; gene flow; isolation; metapopulation;
D O I
10.1007/s004420000586
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Spatial processes in pollination biology are poorly understood, especially at levels above that of the local population. For example, little is known about how pollinators and pollen move among populations, although there is evidence that such movement can exceed what is predicted from intrapopulational movement. We explored pollination success in experimental isolates of the bumblebee- and hummingbird-pollinated wildflower Delphinium nuttallianum. We established a total of 15 arrays of potted plants isolated by 50-400 m from ten natural "source" populations, as well as control arrays embedded within each source. Flowers on potted plants were emasculated, so any pollen received could be assumed to come from source populations. A total of 69 h of observation suggested that pollinators were somewhat less abundant in isolates than in controls, but visited more plants and flowers once within an isolate. Consistent with this, 82.1% of all flowers in isolated arrays received pollen, versus 87.7% in controls. Mean receipt was more than 100 pollen grains per flower in most arrays, and seed set in isolates and controls respectively averaged 69.8% and 74.3% of ovules. Furthermore, pollen receipt in isolates declined relatively slowly with distance from the source. We conclude that pollinators of D. nuttallianum often will fly up to 400 m among populations, and that substantial pollination ensues. Thus isolated populations of this species often belong to metapopulations in terms of pollen dispersal, with important consequences for genetic differentiation, and potential implications for the management of endangered plant species.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条
  • [41] LONG-DISTANCE WIND DISPERSAL OF TREE SEEDS
    GREENE, DF
    JOHNSON, EA
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1995, 73 (07): : 1036 - 1045
  • [42] Long-distance dispersal of wolves in the Dauria ecoregion
    Kirilyuk, Anastasia
    Kirilyuk, Vadim E.
    Ke, Rong
    MAMMAL RESEARCH, 2020, 65 (04) : 639 - 646
  • [43] LONG-DISTANCE DISPERSAL AND SELF-INCOMPATIBILITY
    PANDEY, KK
    NEW ZEALAND JOURNAL OF BOTANY, 1979, 17 (02) : 225 - 226
  • [44] LONG-DISTANCE DISPERSAL OF REEF CORALS BY RAFTING
    JOKIEL, PL
    CORAL REEFS, 1984, 3 (02) : 113 - 116
  • [45] Long-distance dispersal potential in a marine macrophyte
    Harwell, MC
    Orth, RJ
    ECOLOGY, 2002, 83 (12) : 3319 - 3330
  • [46] The importance of long-distance dispersal in biodiversity conservation
    Trakhtenbrot, A
    Nathan, R
    Perry, G
    Richardson, DM
    DIVERSITY AND DISTRIBUTIONS, 2005, 11 (02) : 173 - 181
  • [47] Long-distance dispersal: a framework for hypothesis testing
    Gillespie, Rosemary G.
    Baldwin, Bruce G.
    Waters, Jonathan M.
    Fraser, Ceridwen I.
    Nikula, Raisa
    Roderick, George K.
    TRENDS IN ECOLOGY & EVOLUTION, 2012, 27 (01) : 47 - 56
  • [48] Does polyploidy facilitate long-distance dispersal?
    Linder, H. Peter
    Barker, Nigel P.
    ANNALS OF BOTANY, 2014, 113 (07) : 1175 - 1183
  • [49] The establishment of plants following long-distance dispersal
    Wu, Zeng-Yuan
    Milne, Richard I.
    Liu, Jie
    Nathan, Ran
    Corlett, Richard T.
    Li, De-Zhu
    TRENDS IN ECOLOGY & EVOLUTION, 2023, 38 (03) : 289 - 300
  • [50] CONSEQUENCES OF LONG-DISTANCE DISPERSAL OF PLANT MACROFOSSILS
    HILL, RS
    NEW ZEALAND JOURNAL OF BOTANY, 1981, 19 (02) : 241 - 242