Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst

被引:1089
作者
Yang, Hong Bin [1 ]
Miao, Jianwei [1 ]
Hung, Sung-Fu [2 ]
Chen, Jiazang [1 ]
Tao, Hua Bing [1 ]
Wang, Xizu [3 ]
Zhang, Liping [1 ]
Chen, Rong [1 ]
Gao, Jiajian [1 ]
Chen, Hao Ming [2 ]
Dai, Liming [4 ]
Liu, Bin [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Natl Taiwan Univ, Dept Chem, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[3] ASTAR, IMRE, 08-03,2 Fusionopolis Way, Singapore 138634, Singapore
[4] Case Western Reserve Univ, Dept Macromol Sci & Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA
来源
SCIENCE ADVANCES | 2016年 / 2卷 / 04期
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
IN-SITU; NITROGEN; WATER; EDGE; SULFUR; OXIDE; ELECTROCHEMISTRY; NANOPARTICLES; CONVERSION; SUBSTRATE;
D O I
10.1126/sciadv.1501122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Promising N, P Co-doped Porous Carbon Materials as Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium
    Barman, Jayshree
    Deka, Namrata
    Rudra, Siddheswar
    Dutta, Gitish K.
    CHEMISTRYSELECT, 2022, 7 (28):
  • [32] Enriched graphitic N in nitrogen-doped graphene as a superior metal-free electrocatalyst for the oxygen reduction reaction
    Lu, Xiangyu
    Wang, Dan
    Ge, Liping
    Xiao, Lihui
    Zhang, Haiyan
    Liu, Lilai
    Zhang, Jinqiu
    An, Maozhong
    Yang, Peixia
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (24) : 19665 - 19670
  • [33] Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode
    Kakaei, Karim
    Balavandi, Amin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 490 : 819 - 824
  • [34] Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction
    Dou, Shuo
    Shen, Anli
    Tao, Li
    Wang, Shuangyin
    CHEMICAL COMMUNICATIONS, 2014, 50 (73) : 10672 - 10675
  • [35] N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations
    Li, Mingtao
    Zhang, Lipeng
    Xu, Quan
    Niu, Jianbing
    Xia, Zhenhai
    JOURNAL OF CATALYSIS, 2014, 314 : 66 - 72
  • [36] CoP nanosheets in-situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
    Lu, Yingjiong
    Hou, Wenqiang
    Yang, Dongxu
    Chen, Yuanfu
    ELECTROCHIMICA ACTA, 2019, 307 : 543 - 552
  • [37] N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media
    Zhang, Geng
    Lu, Wangting
    Cao, Feifei
    Xiao, Zhidong
    Zheng, Xinsheng
    JOURNAL OF POWER SOURCES, 2016, 302 : 114 - 125
  • [38] Thermal treated 3D graphene as a highly efficient metal-free electrocatalyst toward oxygen reduction reaction
    Zhang, Lian Ying
    Liu, Ze
    Xu, Binghui
    Liu, Hongdong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (47) : 28278 - 28286
  • [39] A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction
    Zhai, Chunyang
    Sun, Mingjuan
    Zhu, Mingshan
    Song, Shaoqing
    Jiang, Shujuan
    APPLIED SURFACE SCIENCE, 2017, 407 : 503 - 508
  • [40] Simple synthesis of nitrogen-doped carbon spheres as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
    Tong, Jinhui
    Li, Wenyan
    Bo, Lili
    Wang, Wenhui
    Li, Yuliang
    Li, Tao
    Zhang, Qi
    Fan, Haiyan
    CHINESE JOURNAL OF CATALYSIS, 2018, 39 (06) : 1138 - 1145