Gravity quantized: Loop quantum gravity with a scalar field

被引:111
作者
Domagala, Marcin [1 ]
Giesel, Kristina [2 ,3 ]
Kaminski, Wojciech [1 ]
Lewandowski, Jerzy [1 ,4 ]
机构
[1] Uniwersytet Warszawski, Inst Fizyki Teoretycznej, PL-00681 Warsaw, Poland
[2] Tech Univ Munich, D-85748 Garching, Germany
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Inst Gravitat & Cosmos, Dept Phys, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
BLACK-HOLE ENTROPY; COMPLETE OBSERVABLES; COSMOLOGY; SPACE; TIME;
D O I
10.1103/PhysRevD.82.104038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
..."but we do not have quantum gravity." This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.
引用
收藏
页数:13
相关论文
共 35 条
[11]   Loop quantum cosmology: IV. Discrete time evolution [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (06) :1071-1087
[12]   Loop quantum cosmology: III. Wheeler-DeWitt operators [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (06) :1055-1069
[13]   Loop quantum cosmology: II. Volume operators [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (06) :1509-1526
[14]   Loop quantum cosmology: I. Kinematics [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (06) :1489-1508
[15]   DUST AS A STANDARD OF SPACE AND TIME IN CANONICAL QUANTUM-GRAVITY [J].
BROWN, JD ;
KUCHAR, KV .
PHYSICAL REVIEW D, 1995, 51 (10) :5600-5629
[17]   Partial and complete observables for canonical general relativity [J].
Dittrich, B. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6155-6184
[18]   Black-hole entropy from quantum geometry [J].
Domagala, M ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (22) :5233-5243
[19]   Algebraic quantum gravity (AQG): I. Conceptual setup [J].
Giesel, K. ;
Thiemann, T. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (10) :2465-2497
[20]   Algebraic quantum gravity (AQG): IV. Reduced phase space quantization of loop quantum gravity [J].
Giesel, K. ;
Thiemann, T. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (17)