A Discrete Geometric Approach to Solving 2-D Non-Linear Magnetostatic Problems

被引:3
|
作者
Bettini, Paolo [1 ]
Specogna, Ruben [1 ]
Trevisan, Francesco [1 ]
机构
[1] Univ Udine, DIEGM, I-33100 Udine, Italy
关键词
Cell method; discrete geometric approach; finite integration technique; non-linear magnetostatics; TEAM Workshop Problem 25; CONSTITUTIVE MATRICES;
D O I
10.1109/TMAG.2010.2044388
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to introduce a Discrete Geometric Approach to solving 2-D non-linear magnetostatic problems. In particular, an efficient algorithm will be presented to solve magnetostatics in isotropic non-linear media by means of a Newton-Raphson scheme, in which the Jacobian is calculated analytically. Results on a reference configuration (TEAM Workshop Problem 25) are reported and discussed.
引用
收藏
页码:3049 / 3052
页数:4
相关论文
共 50 条
  • [1] Geometric interpretation of discrete approaches to solving magnetostatic problems
    Trevisan, F
    Kettunen, L
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 361 - 365
  • [2] A Non-Linear Approach to Solving Linear Algorithmic Problems
    Muller, Orna
    Haberman, Bruria
    2010 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE), 2010,
  • [3] Solving non-linear optimization problems by a trajectory approach
    Drezner, Zvi
    Miklas-Kalczynska, Malgorzata
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2023, 35 (03) : 537 - 555
  • [4] MASTAC - New code for solving three-dimensional non-linear magnetostatic problems
    Rojak, M
    Shurina, E
    Soloveichik, Y
    Grudiev, A
    Tiunov, M
    Vobly, P
    PROCEEDINGS OF THE 1995 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 1996, : 2291 - 2293
  • [5] Error estimation of finite element solution in non-linear magnetostatic 2D problems
    Marmin, F
    Clenet, S
    Piriou, F
    Bussy, P
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 3268 - 3271
  • [6] SOLUTION OF 2-D NON-LINEAR ELECTROMAGNETIC-FIELD PROBLEMS WITH ADINAT
    ROBERTSON, SR
    COMPUTERS & STRUCTURES, 1981, 13 (5-6) : 631 - 635
  • [7] Separation of the main part of the field in solving three-dimensional non-linear magnetostatic problems
    Ignatiev, A. N.
    Royak, M. E.
    APEIE-2006 8TH INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRONIC INSTRUMENT ENGINEERING PROCEEDINGS, VOL 1, 2006, : 135 - +
  • [8] Loop Formulation in Hybrid Analytical Modeling for Solving 2-D Nonlinear Magnetostatic Problems
    Verbeek, Nicolas
    Baudart, Francois
    Dehez, Bruno
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (08)
  • [9] An algebraic analysis approach to 2-D discrete problems
    Przeworska-Rolewicz, D
    Wysocki, H
    CONTROL AND CYBERNETICS, 2001, 30 (02): : 149 - 158
  • [10] INTEGRABILITY OF THE 2-D NON-LINEAR SCHROEDINGER EQUATION
    SANTOS, GC
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (08) : 2609 - 2611