Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults

被引:19
|
作者
Wu, Yang [1 ,2 ,3 ]
Hu, Haofei [3 ,4 ,5 ]
Cai, Jinlin [1 ,2 ,6 ]
Chen, Runtian [1 ,2 ,3 ]
Zuo, Xin [7 ]
Cheng, Heng [7 ]
Yan, Dewen [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Affiliated Hosp 1, Dept Endocrinol, Shenzhen, Peoples R China
[2] Shenzhen Second Peoples Hosp, Dept Endocrinol, Shenzhen, Peoples R China
[3] Shenzhen Univ, Hlth Sci Ctr, Shenzhen, Peoples R China
[4] Shenzhen Univ, Affiliated Hosp 1, Dept Nephrol, Shenzhen, Peoples R China
[5] Shenzhen Second Peoples Hosp, Dept Nephrol, Shenzhen, Peoples R China
[6] Shantou Univ, Med Coll, Shantou, Peoples R China
[7] Third Peoples Hosp Shenzhen, Dept Endocrinol, Shenzhen, Peoples R China
关键词
machine learning; extreme gradient boosting; simple stepwise model; Incident diabetes; risk; TYPE-2; MELLITUS; MODELS; COMPLICATIONS; NOMOGRAM; TRENDS; IMPACT; BMI;
D O I
10.3389/fpubh.2021.626331
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Purpose: We aimed to establish and validate a risk assessment system that combines demographic and clinical variables to predict the 3-year risk of incident diabetes in Chinese adults. Methods: A 3-year cohort study was performed on 15,928 Chinese adults without diabetes at baseline. All participants were randomly divided into a training set (n = 7,940) and a validation set (n = 7,988). XGBoost method is an effective machine learning technique used to select the most important variables from candidate variables. And we further established a stepwise model based on the predictors chosen by the XGBoost model. The area under the receiver operating characteristic curve (AUC), decision curve and calibration analysis were used to assess discrimination, clinical use and calibration of the model, respectively. The external validation was performed on a cohort of 11,113 Japanese participants. Result: In the training and validation sets, 148 and 145 incident diabetes cases occurred. XGBoost methods selected the 10 most important variables from 15 candidate variables. Fasting plasma glucose (FPG), body mass index (BMI) and age were the top 3 important variables. And we further established a stepwise model and a prediction nomogram. The AUCs of the stepwise model were 0.933 and 0.910 in the training and validation sets, respectively. The Hosmer-Lemeshow test showed a perfect fit between the predicted diabetes risk and the observed diabetes risk (p = 0.068 for the training set, p = 0.165 for the validation set). Decision curve analysis presented the clinical use of the stepwise model and there was a wide range of alternative threshold probability spectrum. And there were almost no the interactions between these predictors (most P-values for interaction >0.05). Furthermore, the AUC for the external validation set was 0.830, and the Hosmer-Lemeshow test for the external validation set showed no statistically significant difference between the predicted diabetes risk and observed diabetes risk (P = 0.824). Conclusion: We established and validated a risk assessment system for characterizing the 3-year risk of incident diabetes.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records
    Dong, Zheyi
    Wang, Qian
    Ke, Yujing
    Zhang, Weiguang
    Hong, Quan
    Liu, Chao
    Liu, Xiaomin
    Yang, Jian
    Xi, Yue
    Shi, Jinlong
    Zhang, Li
    Zheng, Ying
    Lv, Qiang
    Wang, Yong
    Wu, Jie
    Sun, Xuefeng
    Cai, Guangyan
    Qiao, Shen
    Yin, Chengliang
    Su, Shibin
    Chen, Xiangmei
    JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [32] Predicting Freeway Incident Duration Using Machine Learning
    Hamad, Khaled
    Khalil, Mohamad Ali
    Alozi, Abdul Razak
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2020, 18 (02) : 367 - 380
  • [33] Predicting Freeway Incident Duration Using Machine Learning
    Khaled Hamad
    Mohamad Ali Khalil
    Abdul Razak Alozi
    International Journal of Intelligent Transportation Systems Research, 2020, 18 : 367 - 380
  • [34] Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults
    Xiong, Xiao-lu
    Zhang, Rong-xin
    Bi, Yan
    Zhou, Wei-hong
    Yu, Yun
    Zhu, Da-long
    CURRENT MEDICAL SCIENCE, 2019, 39 (04) : 582 - 588
  • [35] Predicting Diabetes Diseases Using Mixed Data and Supervised Machine Learning Algorithms
    Daanouni, Othmane
    Cherradi, Bouchaib
    Tmiri, Amal
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [36] Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning
    Sajeev, Shelda
    Champion, Stephanie
    Beleigoli, Alline
    Chew, Derek
    Reed, Richard L.
    Magliano, Dianna J.
    Shaw, Jonathan E.
    Milne, Roger L.
    Appleton, Sarah
    Gill, Tiffany K.
    Maeder, Anthony
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (06) : 1 - 14
  • [37] Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records
    Zheyi Dong
    Qian Wang
    Yujing Ke
    Weiguang Zhang
    Quan Hong
    Chao Liu
    Xiaomin Liu
    Jian Yang
    Yue Xi
    Jinlong Shi
    Li Zhang
    Ying Zheng
    Qiang Lv
    Yong Wang
    Jie Wu
    Xuefeng Sun
    Guangyan Cai
    Shen Qiao
    Chengliang Yin
    Shibin Su
    Xiangmei Chen
    Journal of Translational Medicine, 20
  • [38] A nomogram for predicting 5-year incidence of type 2 diabetes in a Chinese population
    Lin, Zeyin
    Guo, Dongming
    Chen, Juntian
    Zheng, Baoqun
    ENDOCRINE, 2020, 67 (03) : 561 - 568
  • [39] Comparison of machine learning methods for Predicting 3-Year survival in elderly esophageal squamous cancer patients based on oxidative stress
    Xie, Jin-Biao
    Huang, Shi-Jie
    Yang, Tian-Bao
    Wang, Wu
    Chen, Bo-Yang
    Guo, Lianyi
    BMC CANCER, 2024, 24 (01)
  • [40] Effects of dietary diversity on frailty in Chinese older adults: a 3-year cohort study
    Duan, Ying
    Qi, Qi
    Cui, Yan
    Yang, Ling
    Zhang, Min
    Liu, Huaqing
    BMC GERIATRICS, 2023, 23 (01)