The Use of Electrospinning Technique on Osteochondral Tissue Engineering

被引:24
作者
Casanova, Marta R. [1 ,2 ]
Reis, Rui L. [1 ,2 ]
Martins, Albino [1 ,2 ]
Neves, Nuno M. [1 ,2 ]
机构
[1] 3Bs Res Grp Biomat Biodegradable & Biomimet, Zona Ind Gandra, Avepk Parque Ciencia & Tecnol, Barco, Guimaraes, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, Braga, Guimaraes, Portugal
来源
OSTEOCHONDRAL TISSUE ENGINEERING: NANOTECHNOLOGY, SCAFFOLDING-RELATED DEVELOPMENTS AND TRANSLATION | 2018年 / 1058卷
关键词
Nanofibrous meshes; Processing parameters; Topographies; Surface functionalization; POLYCAPROLACTONE NANOFIBER MESHES; SURFACE MODIFICATION; MOLECULAR-WEIGHT; CELL-DIFFERENTIATION; POLYMER NANOFIBERS; PLASMA TREATMENT; SCAFFOLDS; BONE; COMPOSITE; FIBERS;
D O I
10.1007/978-3-319-76711-6_11
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Electrospinning, an electrostatic fiber fabrication technique, has attracted significant interest in recent years due to its versatility and ability to produce highly tunable nanofibrous meshes. These nanofibrous meshes have been investigated as promising tissue engineering scaffolds since they mimic the scale and morphology of the native extracellular matrix. The sub-micron diameter of fibers produced by this process presents various advantages like the high surface area to volume ratio, tunable porosity, and the ability to manipulate the nanofiber composition in order to get desired properties and functionality. Electrospun fibers can be oriented or arranged randomly, giving control over both mechanical properties and the biological response to the fibrous scaffold. Moreover, bioactive molecules can be integrated with the electrospun nanofibrous scaffolds in order to improve the cellular response. This chapter presents an overview of the developments on electrospun polymer nanofibers including processing, structure, and their applications in the field of osteochondral tissue engineering.
引用
收藏
页码:247 / 263
页数:17
相关论文
共 92 条
[1]  
Anton F., 1934, Patent No. [US1975504A, 1975504]
[2]   Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues [J].
Araujo, J. V. ;
Martins, A. ;
Leonor, I. B. ;
Pinho, E. D. ;
Reis, R. L. ;
Neves, N. M. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2008, 19 (10) :1261-1278
[3]   An electrospun PVDF-TrFe fiber sensor platform for biological applications [J].
Beringer, Laura T. ;
Xu, Xin ;
Shih, Wan ;
Shih, Wei-Heng ;
Habas, Raymond ;
Schauer, Caroline L. .
SENSORS AND ACTUATORS A-PHYSICAL, 2015, 222 :293-300
[4]   Electrospinning: A fascinating fiber fabrication technique [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :325-347
[5]   Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends [J].
Bognitzki, M ;
Frese, T ;
Steinhart, M ;
Greiner, A ;
Wendorff, JH ;
Schaper, A ;
Hellwig, M .
POLYMER ENGINEERING AND SCIENCE, 2001, 41 (06) :982-989
[6]   Melt electrospinning today: An opportune time for an emerging polymer process [J].
Brown, Toby D. ;
Daltona, Paul D. ;
Hutmacher, Dietmar W. .
PROGRESS IN POLYMER SCIENCE, 2016, 56 :116-166
[7]   Electrospinning of collagen and elastin for tissue engineering applications [J].
Buttafoco, L ;
Kolkman, NG ;
Engbers-Buijtenhuijs, P ;
Poot, AA ;
Dijkstra, PJ ;
Vermes, I ;
Feijen, J .
BIOMATERIALS, 2006, 27 (05) :724-734
[8]   Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding [J].
Casper, Cheryl L. ;
Yang, Weidong ;
Farach-Carson, Mary C. ;
Rabolt, John F. .
BIOMACROMOLECULES, 2007, 8 (04) :1116-1123
[9]   Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process [J].
Casper, CL ;
Stephens, JS ;
Tassi, NG ;
Chase, DB ;
Rabolt, JF .
MACROMOLECULES, 2004, 37 (02) :573-578
[10]   Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: Electrospun preparation and transformation to hydroxyapatite nanostructures [J].
Chen, Feng ;
Tang, Qi-Li ;
Zhu, Ying-Jie ;
Wang, Ke-Wei ;
Zhang, Mei-Li ;
Zhai, Wan-Yin ;
Chang, Jiang .
ACTA BIOMATERIALIA, 2010, 6 (08) :3013-3020