Cores of second order differential linear operators with unbounded coefficients on RN

被引:6
作者
Albanese, AA [1 ]
Mangino, E [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
D O I
10.1007/s00233-004-0171-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of the existence of bi-cores for some classes of second order elliptic differential operators with unbounded coefficients generating bicontinuous semigroups on the space of bounded continuous functions on R-N.
引用
收藏
页码:278 / 295
页数:18
相关论文
共 20 条
[1]   Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups [J].
Albanese, AA ;
Mangino, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :477-492
[2]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[3]  
BERTOLDI M, IN PRESS STUDIA MATH
[4]   A HILLE-YOSIDA THEOREM FOR WEAKLY CONTINUOUS SEMIGROUPS [J].
CERRAI, S .
SEMIGROUP FORUM, 1994, 49 (03) :349-367
[5]   ON THE ORNSTEIN-UHLENBECK OPERATOR IN SPACES OF CONTINUOUS-FUNCTIONS [J].
DAPRATO, G ;
LUNARDI, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 131 (01) :94-114
[6]  
Eberle A, 1999, LECT NOTES MATH, V1718
[7]  
Edwards RE., 1994, FUNCTIONAL ANAL THEO
[8]  
ENGEL KJ, 2000, GRAD TEXT M, V194, pR17
[9]  
Jarchow H., 1981, LOCALLY CONVEX SPACE
[10]   A Hille-Yosida theorem for Bi-continuous semigroups [J].
Kühnemund, F .
SEMIGROUP FORUM, 2003, 67 (02) :205-225