mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy

被引:77
作者
Bartolomeo, Rosa [1 ,2 ]
Cinque, Laura [1 ,2 ]
De Leonibus, Chiara [1 ,2 ]
Forrester, Alison [1 ,2 ,3 ]
Salzano, Anna Chiara [1 ,2 ]
Monfregola, Jlenia [1 ]
De Gennaro, Emanuela [1 ]
Nusco, Edoardo [1 ]
Azario, Isabella [4 ]
Lanzara, Carmela [1 ]
Serafini, Marta [4 ]
Levine, Beth [3 ,5 ,6 ]
Ballabio, Andrea [1 ,7 ,8 ]
Settembre, Carmine [1 ,2 ,3 ]
机构
[1] Telethon Inst Genet & Med TIGEM, Naples, Italy
[2] Dulbecco Telethon Inst, Naples, Italy
[3] Univ Naples Federico II, Dept Med & Translat Sci, Med Genet Unit, Naples, Italy
[4] Univ Milano Bicocca, Dulbecco Telethon Inst, Dept Pediat, Ctr Ric Tettamanti, Monza, Italy
[5] Univ Texas Southwestern Med Ctr Dallas, Dept Internal Med, Ctr Autophagy Res, Dallas, TX USA
[6] Univ Texas Southwestern Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX USA
[7] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[8] Texas Childrens Hosp, Jan & Dan Duncan Neurol Res Inst, Houston, TX 77030 USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
AMINO-ACIDS; COMPLEX; MATURATION; PROTEIN; UVRAG; TRAFFICKING; METABOLISM; PHENOTYPE; MECHANISM; SIGNALS;
D O I
10.1172/JCI94130
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance-associated gene (UVRAG), reducing the activity of the associated Beclin 1-Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1-Vps34-UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.
引用
收藏
页码:3717 / 3729
页数:13
相关论文
共 44 条
[1]   Growth Hormone Improves Growth Retardation Induced by Rapamycin without Blocking Its Antiproliferative and Antiangiogenic Effects on Rat Growth Plate [J].
Alvarez-Garcia, Oscar ;
Garcia-Lopez, Enrique ;
Loredo, Vanessa ;
Gil-Pena, Helena ;
Mejia-Gaviria, Natalia ;
Rodriguez-Suarez, Julian ;
Ordonez, Flor A. ;
Santos, Fernando .
PLOS ONE, 2012, 7 (04)
[2]   Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations [J].
Bateman, John F. ;
Boot-Handford, Raymond P. ;
Lamande, Shireen R. .
NATURE REVIEWS GENETICS, 2009, 10 (03) :173-183
[3]   ERQC Autophagy: Yet Another Way to Die [J].
Buchberger, Alexander .
MOLECULAR CELL, 2014, 54 (01) :3-4
[4]   mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis [J].
Chen, Jianquan ;
Long, Fanxin .
DEVELOPMENT, 2014, 141 (14) :2848-2854
[5]   Pacer Mediates the Function of Class III PI3K and HOPS Complexes in Autophagosome Maturation by Engaging Stx17 [J].
Cheng, Xiawei ;
Ma, Xiuling ;
Ding, Xianming ;
Li, Lin ;
Jiang, Xiao ;
Shen, Zhirong ;
Chen, She ;
Liu, Wei ;
Gong, Weihua ;
Sun, Qiming .
MOLECULAR CELL, 2017, 65 (06) :1029-+
[6]   FGF signalling regulates bone growth through autophagy [J].
Cinque, Laura ;
Forrester, Alison ;
Bartolomeo, Rosa ;
Svelto, Maria ;
Venditti, Rossella ;
Montefusco, Sandro ;
Polishchuk, Elena ;
Nusco, Edoardo ;
Rossi, Antonio ;
Medina, Diego L. ;
Polishchuk, Roman ;
De Matteis, Maria Antonietta ;
Settembre, Carmine .
NATURE, 2015, 528 (7581) :272-+
[7]   The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders [J].
Clarke, Lorne A. ;
Hollak, Carla E. M. .
BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 2015, 29 (02) :219-235
[8]   Targeted disruption of the arylsulfatase B gene results in mice resembling the phenotype of mucopolysaccharidosis VI [J].
Evers, M ;
Saftig, P ;
Schmidt, P ;
Hafner, A ;
McLoghlin, DB ;
Schmahl, W ;
Hess, B ;
vonFigura, K ;
Peters, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8214-8219
[9]   The cell biology of lysosomal storage disorders [J].
Futerman, AH ;
van Meer, G .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (07) :554-565
[10]   Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells [J].
Gillooly, DJ ;
Morrow, IC ;
Lindsay, M ;
Gould, R ;
Bryant, NJ ;
Gaullier, JM ;
Parton, RG ;
Stenmark, H .
EMBO JOURNAL, 2000, 19 (17) :4577-4588