A Novel Gene Alignment in Dorea sp. AM58-8 Produces 7-Dehydroxy-3β Bile Acids from Primary Bile Acids

被引:8
作者
Bai, Yingjie [1 ,2 ]
Zhao, Tianhu [1 ,2 ]
Gao, Mengyu [3 ,4 ]
Zou, Yuanqiang [4 ,5 ,6 ]
Lei, Xiaoguang [1 ,2 ,7 ]
机构
[1] Peking Univ, Minist Educ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci,Key Lab Bioorgan Chem & M, Beijing 100871, Peoples R China
[2] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
[3] BGI Beijing, Beijing 100101, Peoples R China
[4] BGI Shenzhen, Shenzhen 518116, Peoples R China
[5] BGI Shenzhen, Shenzhen Engn Lab Detect & Intervent Human Intesti, Shenzhen 518116, Peoples R China
[6] BGI Shenzhen, Qingdao Europe Adv Inst Life Sci, Qingdao 266555, Peoples R China
[7] Inst Canc Res, Shenzhen Bay Lab, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
INTESTINAL MICROBIOTA; BACTERIA; METABOLITES;
D O I
10.1021/acs.biochem.2c00264
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bile acids are essential metabolites and signaling molecules in mammals. Primary bile acids are synthesized from cholesterol in the liver. At the same time, the microbiota in the mammalian gut has many interactions with bile acid, including various biotransformation processes such as 7-dehydroxylation and 3epimerization. 7-Dehydroxylation is mediated by a bile acid-inducible (bai) operon, while 7-dehydroxylation and 3-epimerization are independently observed in only a few strains. Herein, we describe a novel microbe, Dorea sp. AM58-8, that can accomplish a two-step transformation and turn primary bile acids into both 3 alpha secondary bile acids like deoxycholic acid and lithocholic acid, and 3 beta secondary bile acids like isodeoxycholic acid and isolithocholic acid. We subsequently characterized BaiA, BaiB, BaiE, and their substrate profiles biochemically. The potential bai gene clusters in the metagenomes were further mined. Their evolution, potential functions, and possible regulatory pathways were predicted using bioinformatics based on our understanding of the 7-dehydroxylation pathway in Dorea sp. AM58-8. This study of Dorea sp. AM58-8 also helps us distinguish the inactive bacteria that seem to have the 7dehydroxylation pathway proteins and discover the 7-dehydroxylation pathway in other mammalian gut microbes.
引用
收藏
页码:2870 / 2878
页数:9
相关论文
共 30 条
  • [1] Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    Arpaia, Nicholas
    Campbell, Clarissa
    Fan, Xiying
    Dikiy, Stanislav
    van der Veeken, Joris
    deRoos, Paul
    Liu, Hui
    Cross, Justin R.
    Pfeffer, Klaus
    Coffer, Paul J.
    Rudensky, Alexander Y.
    [J]. NATURE, 2013, 504 (7480) : 451 - +
  • [2] Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
    Atarashi, Koji
    Tanoue, Takeshi
    Oshima, Kenshiro
    Suda, Wataru
    Nagano, Yuji
    Nishikawa, Hiroyoshi
    Fukuda, Shinji
    Saito, Takuro
    Narushima, Seiko
    Hase, Koji
    Kim, Sangwan
    Fritz, Joelle V.
    Wilmes, Paul
    Ueha, Satoshi
    Matsushima, Kouji
    Ohno, Hiroshi
    Olle, Bernat
    Sakaguchi, Shimon
    Taniguchi, Tadatsugu
    Morita, Hidetoshi
    Hattori, Masahira
    Honda, Kenya
    [J]. NATURE, 2013, 500 (7461) : 232 - +
  • [3] WebLogo: A sequence logo generator
    Crooks, GE
    Hon, G
    Chandonia, JM
    Brenner, SE
    [J]. GENOME RESEARCH, 2004, 14 (06) : 1188 - 1190
  • [4] Devlin AS, 2015, NAT CHEM BIOL, V11, P685, DOI [10.1038/NCHEMBIO.1864, 10.1038/nchembio.1864]
  • [5] Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders
    Fiorucci, Stefano
    Distrutti, Eleonora
    [J]. TRENDS IN MOLECULAR MEDICINE, 2015, 21 (11) : 702 - 714
  • [6] A metabolic pathway for bile acid dehydroxylation by the gut microbiome
    Funabashi, Masanori
    Grove, Tyler L.
    Wang, Min
    Varma, Yug
    McFadden, Molly E.
    Brown, Laura C.
    Guo, Chunjun
    Higginbottom, Steven
    Almo, Steven C.
    Fischbach, Michael A.
    [J]. NATURE, 2020, 582 (7813) : 566 - +
  • [7] Human cecal bile acids: concentration and spectrum
    Hamilton, James P.
    Xie, Guofeng
    Raufman, Jean-Pierre
    Hogan, Susan
    Griffin, Terrance L.
    Packard, Christine A.
    Chatfield, Dale A.
    Hagey, Lee R.
    Steinbach, Joseph H.
    Hofmann, Alan F.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2007, 293 (01): : G256 - G263
  • [8] Bile acid metabolites control TH17 and Treg cell differentiation
    Hang, Saiyu
    Paik, Donggi
    Yao, Lina
    Kim, Eunha
    Jamma, Trinath
    Lu, Jingping
    Ha, Soyoung
    Nelson, Brandon N.
    Kelly, Samantha P.
    Wu, Lin
    Zheng, Ye
    Longman, Randy S.
    Rastinejad, Fraydoon
    Devlin, A. Sloan
    Krout, Michael R.
    Fischbach, Michael A.
    Littman, Dan R.
    Huh, Jun R.
    [J]. NATURE, 2019, 576 (7785) : 143 - +
  • [9] Identification of a gene encoding a flavoprotein involved in bile acid metabolism by the human gut bacterium Clostridium scindens ATCC 35704
    Harris, Spencer C.
    Devendran, Saravanan
    Alves, Joao M. P.
    Mythen, Sean M.
    Hylemon, Phillip B.
    Ridlon, Jason M.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2018, 1863 (03): : 276 - 283
  • [10] Gene Graphics: a genomic neighborhood data visualization web application
    Harrison, Katherine J.
    de Crecy-Lagard, Valerie
    Zallot, Remi
    [J]. BIOINFORMATICS, 2018, 34 (08) : 1406 - 1408