A parallelism for contact conformal sub-Riemannian geometry

被引:3
|
作者
Falbel, E
Veloso, JM
机构
[1] Univ Pierre & Marie Curie, Inst Math, F-75252 Paris, France
[2] Fed Univ Para, CCEN, Dept Matemat, BR-66059 Belem, Para, Brazil
关键词
D O I
10.1515/form.10.4.453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a sub-conformal structure on a contact distribution over a smooth manifold and find a complete set of local invariants. This structure is shown to be a generalization of CR structures and the sub-conformal invariants reduce to the CR invariants in that case. It includes a class of almost CR structures which arise naturally as hypersurfaces of almost complex manifolds. The main difficulty of our construction is that, contrary to the integrable CR case, the appropriate bundle of coframes where the invariants are defined is not a G-structure.
引用
收藏
页码:453 / 478
页数:26
相关论文
共 50 条
  • [41] CURVATURE AND THE EQUIVALENCE PROBLEM IN SUB-RIEMANNIAN GEOMETRY
    Grong, Erlend
    ARCHIVUM MATHEMATICUM, 2022, 58 (05): : 295 - 327
  • [42] Sub-Riemannian geometry of the coefficients of univalent functions
    Markina, Irina
    Prokhorov, Dmitri
    Vasil'ev, Alexander
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 245 (02) : 475 - 492
  • [43] Measures of transverse paths in sub-Riemannian geometry
    Falbel, E
    Jean, F
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 91 (1): : 231 - 246
  • [44] Dynamical systems and nilpotent sub-Riemannian geometry
    Anzaldo-Meneses, A.
    Monroy-Perez, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [45] Measures of transverse paths in sub-Riemannian geometry
    Elisha Falbel
    Frédéric Jean
    Journal d’Analyse Mathématique, 2003, 91 : 231 - 246
  • [46] VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY
    Hladky, Robert K.
    Pauls, Scott D.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (01): : 8 - 40
  • [47] Subanalyticity of distance and spheres in sub-Riemannian geometry
    Agrachev, A
    Gauthier, JP
    NONLINEAR CONTROL IN THE YEAR 2000, VOL 1, 2000, 258 : 1 - 8
  • [48] Bicycle paths, elasticae and sub-Riemannian geometry
    Ardentov, Andrei
    Bor, Gil
    Le Donne, Enrico
    Montgomery, Richard
    Sachkov, Yuri
    NONLINEARITY, 2021, 34 (07) : 4661 - 4683
  • [49] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Sylvain Arguillère
    The Journal of Geometric Analysis, 2020, 30 : 2897 - 2938
  • [50] The conformal type and isoperimetric dimension of sub-Riemannian manifolds
    Zorin, VA
    Kesel'man, VM
    RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (04) : 860 - 861