Cross-Domain State-of-Charge Estimation of Li-Ion Batteries Based on Deep Transfer Neural Network With Multiscale Distribution Adaptation

被引:46
作者
Bian, Chong [1 ]
Yang, Shunkun [2 ]
Miao, Qiang [3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[3] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; State of charge; Batteries; Task analysis; Feature extraction; Training; Deep learning; Cross domain; deep transfer neural network (DTNN); multiscale domain adaptation; state-of-charge (SOC) estimation; OPEN-CIRCUIT VOLTAGE; MANAGEMENT-SYSTEM;
D O I
10.1109/TTE.2020.3041604
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The success of deep learning in state-of-charge (SOC) estimation relies on the assumption that training and test data have the same distribution. However, this assumption is mostly invalid in real-world applications because the battery operating conditions are diverse and considerable battery data are difficult to obtain to train a specific deep estimator for each condition. To solve these problems, a deep transfer neural network (DTNN) with multiscale distribution adaptation (MDA), which generalizes the deep estimator for domain adaptation, is proposed for cross-domain SOC estimation. In this method, DTNN composed of convolutional and bidirectional recurrent neural networks is constructed to learn nonlinear dynamic features of battery measurements from the source and target domains. Then, MDA is developed to minimize the distribution discrepancy of the high-level transferable features between the source and target domains at multiple scales by simultaneously imposing constraint terms on the DTNN layers. These domain-shared features that obey to small discrepancy can enhance the generalizability and robustness of DTNN for target estimation tasks. Through extensive experiments on three battery data sets, the results show that compared with the state-of-the-art transfer learning methods, the adapted DTNN learned with limited battery data achieves the best performance under low-capacity discharge condition and charge-pause-discharge condition.
引用
收藏
页码:1260 / 1270
页数:11
相关论文
共 50 条
[31]   Real-Time Estimation of Model Parameters and State-of-Charge of Li-Ion Batteries in Electric Vehicles Using a New Mixed Estimation Model [J].
Sarrafan, Kaveh ;
Muttaqi, Kashem M. ;
Sutanto, Danny .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) :5417-5428
[32]   Precise State-of-Charge Estimation in Electric Vehicle Lithium-Ion Batteries Using a Deep Neural Network [J].
Saleem, Arslan ;
Batunlu, Canras ;
Direkoglu, Cem .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
[33]   State of Charge Estimation for Li-Ion Batteries: An Edge-Based Data-Driven Approach [J].
Sesidhar, D. V. S. R. ;
Badachi, Chandrashekhar ;
Nagawaram, Chandrashekar ;
Kondoju, Panduranga Chary ;
Dhanamjayulu, C. ;
Kamwa, Innocent .
IEEE ACCESS, 2025, 13 :106703-106723
[34]   State of Charge Estimation of Lithium-Ion Batteries Based on Temporal Convolutional Network and Transfer Learning [J].
Liu, Yuefeng ;
Li, Jiaqi ;
Zhang, Gong ;
Hua, Bin ;
Xiong, Neal .
IEEE ACCESS, 2021, 9 :34177-34187
[35]   Transformer-Based Deep Learning Models for State of Charge and State of Health Estimation of Li-Ion Batteries: A Survey Study [J].
Guirguis, John ;
Ahmed, Ryan .
ENERGIES, 2024, 17 (14)
[36]   Deep Learning in the State of Charge Estimation for Li-Ion Batteries of Electric Vehicles: A Review [J].
Zhang, Dawei ;
Zhong, Chen ;
Xu, Peijuan ;
Tian, Yiyang .
MACHINES, 2022, 10 (10)
[37]   An Improved Model-Based Self-Adaptive Filter for Online State-of-Charge Estimation of Li-Ion Batteries [J].
Zhang, Chi ;
Yan, Fuwu ;
Du, Changqing ;
Rizzoni, Giorgio .
APPLIED SCIENCES-BASEL, 2018, 8 (11)
[38]   Robust State of Charge estimation for Li-ion batteries based on Extended State Observers [J].
Sandoval-Chileno, Marco A. ;
Castaneda, Luis A. ;
Luviano-Juarez, Alberto ;
Gutierrez-Frias, Octavio ;
Vazquez-Arenas, Jorge .
JOURNAL OF ENERGY STORAGE, 2020, 31
[39]   State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method [J].
Chung, Dae-Won ;
Ko, Jae-Ha ;
Yoon, Keun-Young .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) :1931-1945
[40]   Coupling Neural Networks and Physics Equations For Li-Ion Battery State-of-Charge Prediction [J].
Pollo, Giovanni ;
Burrello, Alessio ;
Macii, Enrico ;
Poncino, Massimo ;
Vinco, Sara ;
Pagliari, Daniele Jahier .
2025 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE, DATE, 2025,