Cross-Domain State-of-Charge Estimation of Li-Ion Batteries Based on Deep Transfer Neural Network With Multiscale Distribution Adaptation

被引:38
|
作者
Bian, Chong [1 ]
Yang, Shunkun [2 ]
Miao, Qiang [3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[3] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2021年 / 7卷 / 03期
基金
中国国家自然科学基金;
关键词
Estimation; State of charge; Batteries; Task analysis; Feature extraction; Training; Deep learning; Cross domain; deep transfer neural network (DTNN); multiscale domain adaptation; state-of-charge (SOC) estimation; OPEN-CIRCUIT VOLTAGE; MANAGEMENT-SYSTEM;
D O I
10.1109/TTE.2020.3041604
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The success of deep learning in state-of-charge (SOC) estimation relies on the assumption that training and test data have the same distribution. However, this assumption is mostly invalid in real-world applications because the battery operating conditions are diverse and considerable battery data are difficult to obtain to train a specific deep estimator for each condition. To solve these problems, a deep transfer neural network (DTNN) with multiscale distribution adaptation (MDA), which generalizes the deep estimator for domain adaptation, is proposed for cross-domain SOC estimation. In this method, DTNN composed of convolutional and bidirectional recurrent neural networks is constructed to learn nonlinear dynamic features of battery measurements from the source and target domains. Then, MDA is developed to minimize the distribution discrepancy of the high-level transferable features between the source and target domains at multiple scales by simultaneously imposing constraint terms on the DTNN layers. These domain-shared features that obey to small discrepancy can enhance the generalizability and robustness of DTNN for target estimation tasks. Through extensive experiments on three battery data sets, the results show that compared with the state-of-the-art transfer learning methods, the adapted DTNN learned with limited battery data achieves the best performance under low-capacity discharge condition and charge-pause-discharge condition.
引用
收藏
页码:1260 / 1270
页数:11
相关论文
共 50 条
  • [1] Temperature Adaptive Transfer Network for Cross-Domain State-of-Charge Estimation of Li-Ion Batteries
    Shen, Liyuan
    Li, Jingjing
    Liu, Jieyan
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (03) : 3857 - 3869
  • [2] State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickshon N. T.
    Hannan, Mahammad A.
    Lipu, Molla S. Hossain
    Sahari, Khairul S. M.
    Ker, Pin Jern
    Muttaqi, Kashem M.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) : 5565 - 5574
  • [3] Robust state-of-charge estimation of Li-ion batteries based on multichannel convolutional and bidirectional recurrent neural networks
    Bian, Chong
    Yang, Shunkun
    Liu, Jie
    Zio, Enrico
    APPLIED SOFT COMPUTING, 2022, 116
  • [4] State-of-Charge Estimation of Li-ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickson N. T.
    Hannan, M. A.
    Lipu, M. S. Hossain
    Sahari, K. S. M.
    Ker, P. J.
    Muttaqi, K. M.
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [5] State-of-Charge Estimation for Li-Ion Power Batteries Based on a Tuning Free Observer
    Tang, Xiaopeng
    Liu, Boyang
    Gao, Furong
    Lv, Zhou
    ENERGIES, 2016, 9 (09)
  • [6] State-of-Charge Estimation for Li-Ion Batteries: A More Accurate Hybrid Approach
    Misyris, George S.
    Doukas, Dimitrios I.
    Papadopoulos, Theofilos A.
    Labridis, Dimitris P.
    Agelidis, Vassilios G.
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2019, 34 (01) : 109 - 119
  • [7] Transfer Learning-Based State of Charge and State of Health Estimation for Li-Ion Batteries: A Review
    Shen, Liyuan
    Li, Jingjing
    Meng, Lichao
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 1465 - 1481
  • [8] A Novel Data-Driven Estimation Method for State-of-Charge Estimation of Li-Ion Batteries
    Zhai, Suwei
    Li, Wenyun
    Wang, Cheng
    Chu, Yundi
    ENERGIES, 2022, 15 (09)
  • [9] AC Impedance-based Online State-of-charge Estimation for Li-ion Batteries
    Wu, Shing-Lih
    Chen, Hung-Cheng
    Tsai, Ming-Yang
    SENSORS AND MATERIALS, 2018, 30 (03) : 539 - 550
  • [10] A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy
    Wang, Yujie
    Zhang, Chenbin
    Chen, Zonghai
    APPLIED ENERGY, 2015, 137 : 427 - 434