Cross-Domain State-of-Charge Estimation of Li-Ion Batteries Based on Deep Transfer Neural Network With Multiscale Distribution Adaptation

被引:45
作者
Bian, Chong [1 ]
Yang, Shunkun [2 ]
Miao, Qiang [3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[3] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2021年 / 7卷 / 03期
基金
中国国家自然科学基金;
关键词
Estimation; State of charge; Batteries; Task analysis; Feature extraction; Training; Deep learning; Cross domain; deep transfer neural network (DTNN); multiscale domain adaptation; state-of-charge (SOC) estimation; OPEN-CIRCUIT VOLTAGE; MANAGEMENT-SYSTEM;
D O I
10.1109/TTE.2020.3041604
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The success of deep learning in state-of-charge (SOC) estimation relies on the assumption that training and test data have the same distribution. However, this assumption is mostly invalid in real-world applications because the battery operating conditions are diverse and considerable battery data are difficult to obtain to train a specific deep estimator for each condition. To solve these problems, a deep transfer neural network (DTNN) with multiscale distribution adaptation (MDA), which generalizes the deep estimator for domain adaptation, is proposed for cross-domain SOC estimation. In this method, DTNN composed of convolutional and bidirectional recurrent neural networks is constructed to learn nonlinear dynamic features of battery measurements from the source and target domains. Then, MDA is developed to minimize the distribution discrepancy of the high-level transferable features between the source and target domains at multiple scales by simultaneously imposing constraint terms on the DTNN layers. These domain-shared features that obey to small discrepancy can enhance the generalizability and robustness of DTNN for target estimation tasks. Through extensive experiments on three battery data sets, the results show that compared with the state-of-the-art transfer learning methods, the adapted DTNN learned with limited battery data achieves the best performance under low-capacity discharge condition and charge-pause-discharge condition.
引用
收藏
页码:1260 / 1270
页数:11
相关论文
共 29 条
[1]  
Abbas G, 2019, INT BHURBAN C APPL S, P463, DOI [10.1109/ibcast.2019.8667172, 10.1109/IBCAST.2019.8667172]
[2]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[3]   Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries [J].
Bian, Chong ;
He, Huoliang ;
Yang, Shunkun .
ENERGY, 2020, 191
[4]   Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Ahmed, Ryan ;
Emadi, Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6730-6739
[5]   Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application [J].
Han, Te ;
Liu, Chao ;
Yang, Wenguang ;
Jiang, Dongxiang .
ISA TRANSACTIONS, 2020, 97 :269-281
[6]   A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations [J].
Hannan, M. A. ;
Lipu, M. S. H. ;
Hussain, A. ;
Mohamed, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 78 :834-854
[7]   State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review [J].
How, Dickson N. T. ;
Hannan, M. A. ;
Lipu, M. S. Hossain ;
Ker, Pin Jern .
IEEE ACCESS, 2019, 7 :136116-136136
[8]   Advanced Machine Learning Approach for Lithium-Ion Battery State Estimation in Electric Vehicles [J].
Hu, Xiaosong ;
Li, Shengbo Eben ;
Yang, Yalian .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2016, 2 (02) :140-149
[9]   Deep Learning for Infrared Thermal Image Based Machine Health Monitoring [J].
Janssens, Olivier ;
Van de Walle, Rik ;
Loccufier, Mia ;
Van Hoecke, Sofie .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) :151-159
[10]  
Kingma DP, 2014, ADV NEUR IN, V27