ALE finite element method for gas-liquid two-phase flow including moving boundary based on an incompressible two-fluid model

被引:17
作者
Uchiyama, T [1 ]
机构
[1] Nagoya Univ, Ctr Informat Media Studies, Chikusa Ku, Nagoya, Aichi 4648603, Japan
关键词
D O I
10.1016/S0029-5493(00)00372-1
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This paper proposes an ALE (Arbitrary Lagrangian-Eulerian) finite element method for gas-liquid two-phase flow, based on an incompressible two-fluid model, to analyze the two-phase flow including moving boundaries. The basic equations are derived by describing the two-fluid model in the ALE form. The solution algorithm is parallel to a fractional step method, and the Galerkin method is employed for the formulation. A quadrilateral element with four nodes is used for the discretization of the computational domain. The present method is also applied to calculate the flow around a circular cylinder, which is forced to oscillate in a quiescent air-water two-phase mixture. The drag coefficients of the cylinder exhibit periodical change in accordance with the variation of the flow around the cylinder. The time variations of the flow field and drag coefficients are discussed in relation to the oscillation of the cylinder. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:69 / 82
页数:14
相关论文
共 18 条
[1]  
[Anonymous], P 2 INT C MULT FLOW
[2]   FINITE-ELEMENT METHODS WITH USER-CONTROLLED MESHES FOR FLUID STRUCTURE INTERACTION [J].
BELYTSCHKO, T ;
FLANAGAN, DP ;
KENNEDY, JM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 33 (1-3) :669-688
[3]   AN ARBITRARY LAGRANGIAN-EULERIAN FINITE-ELEMENT METHOD FOR TRANSIENT DYNAMIC FLUID STRUCTURE INTERACTIONS [J].
DONEA, J ;
GUILIANI, S ;
HALLEUX, JP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 33 (1-3) :689-723
[4]  
FLETCHER CAJ, 1988, COMPUTATIONAL TECHNI, V1, P116
[5]  
HARA F, 1984, ASME S FIV, V1, P103
[6]  
HARA F, 1992, T ASME, V114, P444
[7]   An arbitrary Lagrangian-Eulerian computing method for all flow speeds (Reprinted from the Journal of Computational Physics, vol 14, pg 227-253, 1974) [J].
Hirt, CW ;
Amsden, AA ;
Cook, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :203-216
[8]   LAGRANGIAN-EULERIAN FINITE-ELEMENT FORMULATION FOR INCOMPRESSIBLE VISCOUS FLOWS [J].
HUGHES, TJR ;
LIU, WK ;
ZIMMERMANN, TK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 29 (03) :329-349
[9]  
ISHII M, 1975, THERMOFLUID DYNAMIC, P90
[10]   AN EXPERIMENTAL-STUDY OF DRAG ON A SINGLE TUBE AND ON A TUBE IN AN ARRAY UNDER 2-PHASE CROSS-FLOW [J].
JOO, Y ;
DHIR, VK .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1994, 20 (06) :1009-1019