Solid-state NMR on thermal and fire residues of bisphenol A polycarbonate/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate)/(PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) - Part I: PC charring and the impact of BDP and ZnB

被引:44
作者
Karrasch, A. [1 ]
Wawrzyn, E. [2 ]
Schartel, B. [2 ]
Jaeger, C. [1 ]
机构
[1] BAM Fed Inst Mat Res & Testing, Div 1 3, Richard Willstaetter Str 11, D-12489 Berlin, Germany
[2] BAM Fed Inst Mat Res & Testing, D-12205 Berlin, Germany
关键词
Flame retardance; NMR; Polycarbonate (PC) blends; Bisphenol-A bis(diphenyl)phosphate (BDP); Zinc borate; FLAME RETARDANCY MECHANISMS; CRYSTAL-STRUCTURE; SI-29; NMR; C-13; POLYPHOSPHATE; PHOSPHORUS; POLYMER; DECOMPOSITION; INTUMESCENCE; ASSOCIATION;
D O I
10.1016/j.polymdegradstab.2010.07.034
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Structural changes in the condensed phase of bisphenol A polycarbonate (containing 0.45 wt% poly (tetrafluoroethylene))/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) during thermal treatment in nitrogen atmosphere and in fire residues were investigated by solid-state NMR. H-1, B-11, C-13 and P-31 NMR experiments using direct excitation with a single pulse and H-1-P-31 cross-polarization (CP) were carried out including 31P(1 H) and C-13{P-31}double-resonance techniques (REDOR: Rotational Echo Double Resonance) on a series of heat-treated samples (580 K-850 K). Because many amorphous phases occur in the solid residues, and solid-state NMR spectroscopy addresses the most important sites carbon, phosphorus and boron, this paper is the key analytical approach for understanding the pyrolysis and flame retarding phenomenon in the condensed phase of PC/SiR/BDP and PC/SiR/BDP/ZnB. For the system PC/SiR/BDP it is shown that (i) at temperatures around 750-770 K (main decomposition step) carbonaceous charring of PC occurs and arylphosphate structures are still present, reacted in part with the decomposing PC; (ii) for higher temperatures from 770 K the phosphorus remaining in the solid phase increasingly converts to amorphous phosphonates and inorganic orthophosphates with a minor amount of crystalline orthophosphates; and (iii) H-1-P-31{H-1} CP REDOR and H-1-C-13{P-31} CP REDOR NMR experiments suggest that the phosphates and phosphonates are bound via oxygen to aromatic carbons, indicating the interaction with the carbonaceous char. When ZnB is added to the system PC/SiR/BDP, (i) ZnB leads to a slightly enhanced PC decomposition for temperatures below 750 K; (ii) alpha-Zn-3(PO4)(2) and borophosphate (BPO4) are formed in small amounts at high temperatures suggesting a reaction between BDP and ZnB during thermal decomposition; and (iii) most of the borate remains in the solid residues, forming an amorphous pure borate network, with the BO3/BO4 ratio increasing with higher temperatures. The NMR data of thermal and fire residues are highly correlated, underlining the importance of this work for understanding the pyrolysis and flame retardancy mechanisms in the condensed phase during the burning of the PC/SiR blends. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2525 / 2533
页数:9
相关论文
共 41 条
[1]   FLAME-RETARDANT POLYPHOSPHATE ESTERS .1. CONDENSATION POLYMERS OF BISPHENOLS WITH ARYL PHOSPHORODICHLORIDATES - SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES [J].
ANNAKUTTY, KS ;
KISHORE, K .
POLYMER, 1988, 29 (04) :756-761
[2]   SIMPSON: A general simulation program for solid-state NMR spectroscopy [J].
Bak, M ;
Rasmussen, JT ;
Nielsen, NC .
JOURNAL OF MAGNETIC RESONANCE, 2000, 147 (02) :296-330
[3]   HETERONUCLEAR DECOUPLING IN ROTATING SOLIDS [J].
BENNETT, AE ;
RIENSTRA, CM ;
AUGER, M ;
LAKSHMI, KV ;
GRIFFIN, RG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (16) :6951-6958
[4]   CARBONIZATION MECHANISMS RESULTING FROM INTUMESCENCE .2. ASSOCIATION WITH AN ETHYLENE TERPOLYMER AND THE AMMONIUM POLYPHOSPHATE PENTAERYTHRITOL FIRE-RETARDANT SYSTEM [J].
BOURBIGOT, S ;
LEBRAS, M ;
DELOBEL, R ;
BREANT, P ;
TREMILLON, JM .
CARBON, 1995, 33 (03) :283-294
[5]   CARBONIZATION MECHANISMS RESULTING FROM INTUMESCENCE ASSOCIATION WITH THE AMMONIUM POLYPHOSPHATE-PENTAERYTHRITOL FIRE-RETARDANT SYSTEM [J].
BOURBIGOT, S ;
LEBRAS, M ;
DELOBEL, R .
CARBON, 1993, 31 (08) :1219-1230
[6]   Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6 [J].
Braun, Ulrike ;
Schartel, Bernhard ;
Fichera, Mario A. ;
Jaeger, Christian .
POLYMER DEGRADATION AND STABILITY, 2007, 92 (08) :1528-1545
[7]   Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites [J].
Braun, Ulrike ;
Balabanovich, Aliaksandr I. ;
Schartel, Bernhard ;
Knoll, Uta ;
Artner, Johannes ;
Ciesielski, Michael ;
Doering, Manfred ;
Perez, Raul ;
Sandler, Jan K. W. ;
Altstaedt, Volker ;
Hoffmann, Thorsten ;
Pospiech, Doris .
POLYMER, 2006, 47 (26) :8495-8508
[8]   A modified cross-polarization magic angle spinning C-13 NMR procedure for the study of humic materials [J].
Cook, RL ;
Langford, CH ;
Yamdagni, R ;
Preston, CM .
ANALYTICAL CHEMISTRY, 1996, 68 (22) :3979-3986
[9]   CRYSTAL STRUCTURE OF BRUSHITE, CALCIUM HYDROGEN ORTHOPHOSPHATE DIHYDRATE - NEUTRON-DIFFRACTION INVESTIGATION [J].
CURRY, NA ;
JONES, DW .
JOURNAL OF THE CHEMICAL SOCIETY A -INORGANIC PHYSICAL THEORETICAL, 1971, (23) :3725-&
[10]  
Eckel T., 2004, PLASTIC FLAMMABILITY, P158