Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments

被引:399
作者
Qin, Bingchao [1 ]
Wang, Dongyang [1 ]
Liu, Xixi [2 ]
Qin, Yongxin [1 ]
Dong, Jin-Feng [3 ]
Luo, Jiangfan [4 ]
Li, Jing-Wei [3 ]
Liu, Wei [4 ]
Tan, Gangjian [4 ]
Tang, Xinfeng [4 ]
Li, Jing-Feng [3 ]
He, Jiaqing [2 ]
Zhao, Li-Dong [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[4] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
关键词
ULTRALOW THERMAL-CONDUCTIVITY; HIGH-EFFICIENCY; BAND CONVERGENCE; PERFORMANCE; PBTE; NANOSTRUCTURES; FIGURE; LEADS; GETE; GAP;
D O I
10.1126/science.abi8668
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermoelectric materials transfer heat and electrical energy, hence they are useful for power generation or cooling applications. Many of these materials have narrow bandgaps, especially for cooling applications. We developed SnSe crystals with a wide bandgap (E-g approximate to 33 k(B)T) with attractive thermoelectric properties through Pb alloying. The momentum and energy multiband alignments promoted by Pb alloying resulted in an ultrahigh power factor of similar to 75 mu W cm(-1) K-2 at 300 K, and an average figure of merit ZT of similar to 1.90. We found that a 31-pair thermoelectric device can produce a power generation efficiency of similar to 4.4% and a cooling Delta T-max of similar to 45.7 K. These results demonstrate that wide-bandgap compounds can be used for thermoelectric cooling applications.
引用
收藏
页码:556 / +
页数:50
相关论文
共 71 条
  • [1] [Anonymous], 2013, Thermoelectric refrigeration
  • [2] High-performance bulk thermoelectrics with all-scale hierarchical architectures
    Biswas, Kanishka
    He, Jiaqing
    Blum, Ivan D.
    Wu, Chun-I
    Hogan, Timothy P.
    Seidman, David N.
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE, 2012, 489 (7416) : 414 - 418
  • [3] Biswas K, 2011, NAT CHEM, V3, P160, DOI [10.1038/nchem.955, 10.1038/NCHEM.955]
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY
    CALLAWAY, J
    VONBAEYER, HC
    [J]. PHYSICAL REVIEW, 1960, 120 (04): : 1149 - 1154
  • [6] Realizing High-Ranged Out-of-Plane ZTs in N-Type SnSe Crystals through Promoting Continuous Phase Transition
    Chang, Cheng
    Wang, Dongyang
    He, Dongsheng
    He, Wenke
    Zhu, Fangyuan
    Wang, Guangtao
    He, Jiaqing
    Zhao, Li-Dong
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (28)
  • [7] Anharmoncity and low thermal conductivity in thermoelectrics
    Chang, Cheng
    Zhao, Li-Dong
    [J]. MATERIALS TODAY PHYSICS, 2018, 4 : 50 - 57
  • [8] 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals
    Chang, Cheng
    Wu, Minghui
    He, Dongsheng
    Pei, Yanling
    Wu, Chao-Feng
    Wu, Xuefeng
    Yu, Hulei
    Zhu, Fangyuan
    Wang, Kedong
    Chen, Yue
    Huang, Li
    Li, Jing-Feng
    He, Jiaqing
    Zhao, Li-Dong
    [J]. SCIENCE, 2018, 360 (6390) : 778 - 782
  • [9] CsBi4Te6:: A high-performance thermoelectric material for low-temperature applications
    Chung, DY
    Hogan, T
    Brazis, P
    Rocci-Lane, M
    Kannewurf, C
    Bastea, M
    Uher, C
    Kanatzidis, MG
    [J]. SCIENCE, 2000, 287 (5455) : 1024 - 1027
  • [10] The HighScore suite
    Degen, Thomas
    Sadki, Mustapha
    Bron, Egbert
    Konig, Uwe
    Nenert, Gwilherm
    [J]. POWDER DIFFRACTION, 2014, 29 : S13 - S18