Low-Cost Membranes for Vanadium Redox-Flow Batteries

被引:3
|
作者
Dueerkop, Dennis [1 ]
Widdecke, Hartmut [1 ]
Kunz, Ulrich [2 ]
Schilde, Carsten [3 ]
Schmiemann, Achim [1 ]
机构
[1] Ostfalia Hsch, Angew Wissensch, Inst Recycling, Robert Koch Pl 8a, D-38440 Wolfsburg, Germany
[2] Tech Univ Clausthal, Inst Chem & Elektrochem Verfahrenstech, Leibnizstr 17, D-38678 Clausthal Zellerfeld, Germany
[3] TU Braunschweig, Inst Partikeltech, Volkmaroder Str 5, D-38104 Braunschweig, Germany
关键词
Ion exchange membrane; Vanadium redox flow battery;
D O I
10.1002/cite.202100033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Reinforced proton exchange membranes (gPEM) are fabricated by coating a polymer suspension onto a polymer mesh. The polymer suspension contains solved poly(ether sulfone) (PES) and dispersed poly(styrene). The poly(styrene) is cross linked, sulfonylated and sulfonated. By using a poly(ether ether ketone) (PEEK) mesh with a thickness of 128 mu m higher proton conductivities were measured compared to Selemion CMVN and Nafion N115 at 25 degrees C. An energy efficiency of 68.6 % was measured with Nafion N115, an energy efficiency of 53.1 % with CMVN and an energy efficiency of 69.4 % with a fabricated reinforced membrane at a current density of 100 mA cm(-2) in a vanadium redox flow cell.
引用
收藏
页码:1445 / 1450
页数:6
相关论文
共 50 条
  • [1] Low-Cost-Membranen fur die Vanadium-Redox-Flow-BatterieLow-Cost Membranes for Vanadium Redox-Flow Batteries
    Dueerkop, Dennis
    Widdecke, Hartmut
    Schmiemann, Achim
    Kunz, Ulrich
    Schilde, Carsten
    CHEMIE INGENIEUR TECHNIK, 2019, 91 (08) : 1192 - 1197
  • [2] Progress and directions in low-cost redox-flow batteries for large-scale energy storage
    Li, Bin
    Liu, Jun
    NATIONAL SCIENCE REVIEW, 2017, 4 (01) : 91 - 105
  • [3] Redox-targeted catalysis for vanadium redox-flow batteries
    Zhang, Feifei
    Huang, Songpeng
    Wang, Xun
    Jia, Chuankun
    Du, Yonghua
    Wang, Qing
    NANO ENERGY, 2018, 52 : 292 - 299
  • [4] Progress and directions in low-cost redox-flow batteries for large-scale energy storage
    Bin Li
    Jun Liu
    NationalScienceReview, 2017, 4 (01) : 91 - 105
  • [5] Membranes based on carboxyl-containing polyacrylonitrile for applications in vanadium redox-flow batteries
    Karpushkin, Evgeny A.
    Gvozdik, Nataliya A.
    Stevenson, Keith J.
    Sergeyev, Vladimir G.
    MENDELEEV COMMUNICATIONS, 2017, 27 (04) : 390 - 391
  • [6] Preparation of Electrolyte for Vanadium Redox-Flow Batteries Based on Vanadium Pentoxide
    Martin, Jan
    Schafner, Katharina
    Turek, Thomas
    ENERGY TECHNOLOGY, 2020, 8 (09)
  • [7] Long-Term Stability of Nafion Hybrid Membranes for Use in Vanadium Redox-Flow Batteries
    Drillkens, J.
    Schulte, D.
    Sauer, D. U.
    BATTERIES AND ENERGY TECHNOLOGY (GENERAL) - 217TH ECS MEETING, 2010, 28 (30): : 167 - 177
  • [8] Aspects of electron transfer processes in vanadium redox-flow batteries
    Roznyatovskaya, Nataliya
    Noack, Jens
    Pinkwart, Karsten
    Tuebke, Jens
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 19 : 42 - 48
  • [9] Polyacrylonitrile-Based Membranes for Aqueous Redox-Flow Batteries
    Karpushkin, E. A.
    Klimenko, M. M.
    Gvozdik, N. A.
    Stevenson, K. J.
    Sergeyev, V. G.
    SELECTED PROCEEDINGS FROM THE 231ST ECS MEETING, 2017, 77 (11): : 163 - 171
  • [10] Vanadium Electrolyte for All-Vanadium Redox-Flow Batteries: The Effect of the Counter Ion
    Roznyatovskaya, Nataliya
    Noack, Jens
    Mild, Heiko
    Fuehl, Matthias
    Fischer, Peter
    Pinkwart, Karsten
    Tuebke, Jens
    Skyllas-Kazacos, Maria
    BATTERIES-BASEL, 2019, 5 (01):