An Enhancement of a Learning Procedure in Neuro-Fuzzy Model

被引:0
|
作者
Vlasenko, Alexander [1 ]
Vynokurova, Olena [2 ,3 ]
Vlasenko, Nataliia [4 ]
Bodyanskiy, Yevgeniy [1 ]
机构
[1] Kharkiv Natl Univ Radio Elect, Dept Artificial Intelligence, Kharkov, Ukraine
[2] Kharkiv Natl Univ Radio Elect, Kharkov, Ukraine
[3] IT Step Univ, Lvov, Ukraine
[4] Simon Kuznets Kharkiv Natl Univ Econ, Dept Informat & Comp Engn, Kharkov, Ukraine
来源
2018 IEEE FIRST INTERNATIONAL CONFERENCE ON SYSTEM ANALYSIS & INTELLIGENT COMPUTING (SAIC) | 2018年
关键词
time series; neuro-fuzzy; membership function; Gaussian; Mackey-Glass; NETWORKS; SYSTEM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we propose an extended version of the learning algorithm for the hybrid five-layer neuro-fuzzy model. Backpropagation algorithm has been applied to the first layer membership functions centers tuning. The experimental results have shown that introduced enhancement significantly improves accuracy in time-series prediction benchmark tests without significant performance cost.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [1] A Novel Ensemble Neuro-Fuzzy Model for Financial Time Series Forecasting
    Vlasenko, Alexander
    Vlasenko, Nataliia
    Vynokurova, Olena
    Bodyanskiy, Yevgeniy
    Peleshko, Dmytro
    DATA, 2019, 4 (03)
  • [2] A Novel Neuro-Fuzzy Model for Multivariate Time-Series Prediction
    Vlasenko, Alexander
    Vlasenko, Nataliia
    Vynokurova, Olena
    Peleshko, Dmytro
    DATA, 2018, 3 (04)
  • [3] A Hybrid Neuro-Fuzzy Model for Stock Market Time-Series Prediction
    Vlasenko, Alexander
    Vynokurova, Olena
    Vlasenko, Nataliia
    Peleshko, Marta
    2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 352 - 355
  • [4] Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and Classification
    Feng, Shuang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (02) : 414 - 424
  • [5] Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
    Talei, Amin
    Chua, Lloyd Hock Chye
    Quek, Chai
    Jansson, Per-Erik
    JOURNAL OF HYDROLOGY, 2013, 488 : 17 - 32
  • [6] NEURO-FUZZY MULTICRITERIA ASSESSMENT MODEL
    Malyar, N. N.
    Polishchuk, A., V
    Polishchuk, V. V.
    Sharkadi, M. N.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2019, (04) : 83 - 91
  • [7] A FORECASTING NEURO-FUZZY NETWORK BASED ON A MULTIDIMENSIONAL NEO-FUZZY NEURON AND ITS LEARNING PROCEDURE
    Tyshchenko, O. K.
    Pliss, I. P.
    Shkuro, K. O.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2014, 2 : 120 - 125
  • [8] Wavelet and neuro-fuzzy conjunction model for streamflow forecasting
    Kisi, Ozgur
    Partal, Turgay
    HYDROLOGY RESEARCH, 2011, 42 (06): : 447 - 456
  • [9] Neuro-fuzzy modeling with a new hybrid learning
    Amaral, TG
    Crisóstomo, MM
    Pires, VF
    Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Vols 1and 2, 2004, : 882 - 887
  • [10] Adaptive neuro-fuzzy fusion of sensor data
    Petkovic, Dalibor
    INFRARED PHYSICS & TECHNOLOGY, 2014, 67 : 222 - 228