共 50 条
Partially Linear Single-Index Model in the Presence of Measurement Error
被引:2
作者:
Lin, Hongmei
[1
,2
]
Shi, Jianhong
[3
]
Tong, Tiejun
[4
]
Zhang, Riquan
机构:
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
[2] East China Normal Univ, Minist Educ, Key Lab Adv Theory & Applicat Stat & Data Sci, Shanghai 200062, Peoples R China
[3] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041081, Shanxi, Peoples R China
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong 519087, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Local linear regression;
measurement error;
partially linear model;
SIMEX;
single-index model;
REGRESSION;
D O I:
10.1007/s11424-022-1112-x
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The partially linear single-index model (PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement error possibly in all the variables. The authors propose a new efficient estimation procedure based on the local linear smoothing and the simulation-extrapolation method, and further establish the asymptotic normality of the proposed estimators for both the index parameter and nonparametric link function. The authors also carry out extensive Monte Carlo simulation studies to evaluate the finite sample performance of the new method, and apply it to analyze the osteoporosis prevention data.
引用
收藏
页码:2361 / 2380
页数:20
相关论文
共 50 条