Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V-Laplacian

被引:12
作者
Chen, Qun [1 ]
Qiu, Hongbing [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
Gradient estimate; Nonlinear parabolic equation; Positive solution; Harnack inequality;
D O I
10.1007/s10455-016-9501-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider gradient estimates for the positive solutions to the following nonlinear parabolic equation: on M x [0, T], where a is a real constant. We obtain the Li-Yau type bounds of the above equation, which cover the estimates in Davies (Heat kernels and spectral theory 1989), Huang et al. (Ann GlobAnalGeom 43: 209-232, 2013), Li andXu (Adv Math 226: 4456-4491, 2011) and Qian (J Math Anal Appl 409: 556-566, 2014). Besides, as a corollary, we give a gradient estimate for the corresponding elliptic case: which improves the estimates in Chen and Chen (Ann Glob Anal Geom 35: 397-404, 2009) and Yang (Proc AMS 136(11): 4095-4102, 2008).
引用
收藏
页码:47 / 64
页数:18
相关论文
共 20 条
[1]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[2]  
Bakry Dominique, 2005, Theta Ser. Adv. Math., V4, P115
[3]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[4]  
Chen Q., 2015, RIGIDITY SELF SHRINK
[5]   A Maximum Principle for Generalizations of Harmonic Maps in Hermitian, Affine, Weyl, and Finsler Geometry [J].
Chen, Qun ;
Jost, Juergen ;
Wang, Guofang .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) :2407-2426
[6]   Existence and Liouville theorems for V-harmonic maps from complete manifolds [J].
Chen, Qun ;
Jost, Juergen ;
Qiu, Hongbing .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (04) :565-584
[7]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[8]   Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Huang, Zhijie ;
Li, Haizhong .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 43 (03) :209-232
[9]   Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation [J].
Li, Junfang ;
Xu, Xiangjin .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4456-4491
[10]  
LI JY, 1991, J FUNCT ANAL, V100, P233