Penalized least squares approximation methods and their applications to stochastic processes
被引:9
|
作者:
Suzuki, Takumi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Suzuki, Takumi
[1
,2
]
Yoshida, Nakahiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Yoshida, Nakahiro
[1
,2
]
机构:
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama, Japan
Variable selection;
Least squares approximation;
Cox process;
Diffusion type process;
QUASI-LIKELIHOOD ANALYSIS;
ADAPTIVE LASSO;
INEQUALITIES;
SELECTION;
D O I:
10.1007/s42081-019-00064-w
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We construct an objective function that consists of a quadratic approximation term and an Lq penalty (0<q<less than or equal to>1) term. Thanks to the quadratic approximation, we can deal with various kinds of loss functions into a unified way, and by taking advantage of the Lq penalty term, we can simultaneously execute variable selection and parameter estimation. In this article, we show that our estimator has oracle properties, and even better property. We also treat stochastic processes as applications.