Quantum Dots in Graphene Nanoribbons

被引:101
|
作者
Wang, Shiyong [1 ]
Kharche, Neerav [2 ]
Girao, Eduardo Costa [3 ]
Feng, Xinliang [4 ]
Muellen, Klaus [5 ]
Meunier, Vincent [2 ]
Fasel, Roman [1 ,6 ]
Ruffieux, Pascal [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[3] Univ Fed Piaui, Dept Fis, BR-64049550 Teresina, Piaui, Brazil
[4] Tech Univ Dresden, Dept Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[5] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[6] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Graphene quantum dot; graphene nanoribbon; scanning tunneling spectroscopy; density functional theory; screening; ON-SURFACE SYNTHESIS; QUASI-PARTICLE; BAND-GAP; RESONANCES; MICROSCOPY;
D O I
10.1021/acs.nanolett.7b01244
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene quantum dots (GQDs) hold great promise for applications in electronics, optoelectronics, and bioelectronics, but the fabrication of widely tunable GQDs has remained elusive. Here, we report the fabrication of atomically precise GQDs consisting of low-bandgap N = 14 armchair graphene nanoribbon (AGNR) segments that are achieved through edge fusion of N = 7 AGNRs. The so-formed intraribbon GQDs reveal deterministically defined, atomically sharp interfaces between wide and narrow AGNR segments and host a pair of low-lying interface states. Scanning tunneling microscopy/spectroscopy measurements complemented by extensive simulations reveal that their energy splitting depends exponentially on the length of the central narrow bandgap segment. This allows tuning of the fundamental gap of the GQDs over 1 order of magnitude within a few nanometers length range. These results are expected to pave the way for the development of widely tunable intraribbon GQD-based devices.
引用
收藏
页码:4277 / 4283
页数:7
相关论文
共 50 条
  • [1] Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution
    Carbonell-Sanroma, Eduard
    Brandimarte, Pedro
    Balog, Richard
    Corso, Martina
    Kawai, Shigeki
    Garcia-Lekue, Aran
    Saito, Shohei
    Yamaguchi, Shigehiro
    Meyer, Ernst
    Sanchez-Portal, Daniel
    Ignacio Pascual, Jose
    NANO LETTERS, 2017, 17 (01) : 50 - 56
  • [2] Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons
    Rizzo, Daniel J.
    Jiang, Jingwei
    Joshi, Dharati
    Veber, Gregory
    Bronner, Christopher
    Durr, Rebecca A.
    Jacobse, Peter H.
    Cao, Ting
    Kalayjian, Alin
    Rodriguez, Henry
    Butler, Paul
    Chen, Ting
    Louie, Steven G.
    Fischer, Felix R.
    Crommie, Michael F.
    ACS NANO, 2021, 15 (12) : 20633 - 20642
  • [3] Magnetism in quantum dots on graphene-graphane nanoribbons
    L. A. Chernozatonskii
    V. A. Demin
    P. P. Gusyatnikova
    Doklady Physics, 2013, 58 : 272 - 276
  • [4] Graphene nanoribbons for quantum electronics
    Wang, Haomin
    Wang, Hui Shan
    Ma, Chuanxu
    Chen, Lingxiu
    Jiang, Chengxin
    Chen, Chen
    Xie, Xiaoming
    Li, An-Ping
    Wang, Xinran
    NATURE REVIEWS PHYSICS, 2021, 3 (12) : 791 - 802
  • [5] Recent progresses of quantum confinement in graphene quantum dots
    Li, Si-Yu
    He, Lin
    FRONTIERS OF PHYSICS, 2022, 17 (03)
  • [6] Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy
    Deniz, Okan
    Sanchez-Sanchez, Carlos
    Dumslaff, Tim
    Feng, Xinliang
    Narita, Akimitsu
    Muellen, Klaus
    Kharche, Neerav
    Meunier, Vincent
    Fasel, Roman
    Ruffieux, Pascal
    NANO LETTERS, 2017, 17 (04) : 2197 - 2203
  • [7] Inserting Porphyrin Quantum Dots in Bottom-Up Synthesized Graphene Nanoribbons
    Perkins, Wade
    Fischer, Felix R.
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (70) : 17687 - 17691
  • [8] Tunable Quantum Dots from Atomically Precise Graphene Nanoribbons Using a Multi-Gate Architecture
    Zhang, Jian
    Braun, Oliver
    Barin, Gabriela Borin
    Sangtarash, Sara
    Overbeck, Jan
    Darawish, Rimah
    Stiefel, Michael
    Furrer, Roman
    Olziersky, Antonis
    Muellen, Klaus
    Shorubalko, Ivan
    Daaoub, Abdalghani H. S.
    Ruffieux, Pascal
    Fasel, Roman
    Sadeghi, Hatef
    Perrin, Mickael L.
    Calame, Michel
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (04)
  • [9] Certain Aspects of Quantum Transport in Zigzag Graphene Nanoribbons
    Pratap, Surender
    Kumar, Sandeep
    Singh, Ravi Pratap
    FRONTIERS IN PHYSICS, 2022, 10
  • [10] Recent progresses of quantum confinement in graphene quantum dots
    Si-Yu Li
    Lin He
    Frontiers of Physics, 2022, 17