Quantum Dots in Graphene Nanoribbons

被引:101
|
作者
Wang, Shiyong [1 ]
Kharche, Neerav [2 ]
Girao, Eduardo Costa [3 ]
Feng, Xinliang [4 ]
Muellen, Klaus [5 ]
Meunier, Vincent [2 ]
Fasel, Roman [1 ,6 ]
Ruffieux, Pascal [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[3] Univ Fed Piaui, Dept Fis, BR-64049550 Teresina, Piaui, Brazil
[4] Tech Univ Dresden, Dept Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[5] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[6] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Graphene quantum dot; graphene nanoribbon; scanning tunneling spectroscopy; density functional theory; screening; ON-SURFACE SYNTHESIS; QUASI-PARTICLE; BAND-GAP; RESONANCES; MICROSCOPY;
D O I
10.1021/acs.nanolett.7b01244
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene quantum dots (GQDs) hold great promise for applications in electronics, optoelectronics, and bioelectronics, but the fabrication of widely tunable GQDs has remained elusive. Here, we report the fabrication of atomically precise GQDs consisting of low-bandgap N = 14 armchair graphene nanoribbon (AGNR) segments that are achieved through edge fusion of N = 7 AGNRs. The so-formed intraribbon GQDs reveal deterministically defined, atomically sharp interfaces between wide and narrow AGNR segments and host a pair of low-lying interface states. Scanning tunneling microscopy/spectroscopy measurements complemented by extensive simulations reveal that their energy splitting depends exponentially on the length of the central narrow bandgap segment. This allows tuning of the fundamental gap of the GQDs over 1 order of magnitude within a few nanometers length range. These results are expected to pave the way for the development of widely tunable intraribbon GQD-based devices.
引用
收藏
页码:4277 / 4283
页数:7
相关论文
共 50 条
  • [1] Magnetism in quantum dots on graphene-graphane nanoribbons
    L. A. Chernozatonskii
    V. A. Demin
    P. P. Gusyatnikova
    Doklady Physics, 2013, 58 : 272 - 276
  • [2] Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution
    Carbonell-Sanroma, Eduard
    Brandimarte, Pedro
    Balog, Richard
    Corso, Martina
    Kawai, Shigeki
    Garcia-Lekue, Aran
    Saito, Shohei
    Yamaguchi, Shigehiro
    Meyer, Ernst
    Sanchez-Portal, Daniel
    Ignacio Pascual, Jose
    NANO LETTERS, 2017, 17 (01) : 50 - 56
  • [3] Magnetism in quantum dots on graphene-graphane nanoribbons
    Chernozatonskii, L. A.
    Demin, V. A.
    Gusyatnikova, P. P.
    DOKLADY PHYSICS, 2013, 58 (07) : 272 - 276
  • [4] Double quantum dots in atomically-precise graphene nanoribbons
    Zhang, Jian
    Qian, Liu
    Barin, Gabriela Borin
    Chen, Peipei
    Muellen, Klaus
    Ruffieux, Pascal
    Fasel, Roman
    Zhang, Jin
    Calame, Michel
    Perrin, Mickael L.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2023, 3 (03):
  • [5] QUANTUM MONTE CARLO STUDY OF MAGNETIC CORRELATION IN GRAPHENE NANORIBBONS AND QUANTUM DOTS
    Gao, Pan
    Liu, Suhang
    Tian, Lin
    Ma, Tianxing
    MODERN PHYSICS LETTERS B, 2013, 27 (21):
  • [6] Signatures of single quantum dots in graphene nanoribbons within the quantum Hall regime
    Tovari, Endre
    Makk, Peter
    Rickhaus, Peter
    Schonenberger, Christian
    Csonka, Szabolcs
    NANOSCALE, 2016, 8 (22) : 11480 - 11486
  • [7] Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction
    Jin, Huile
    Huang, Huihui
    He, Yuhua
    Feng, Xin
    Wang, Shun
    Dai, Liming
    Wang, Jichang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) : 7588 - 7591
  • [8] Gate voltage enhances the thermoelectric transport of quantum dots in graphene nanoribbons
    Amorim, Felippe P.
    Torres, Alberto
    Villegas, Cesar E. P.
    Rocha, Alexandre R.
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 227
  • [9] Dirac fermions in armchair graphene nanoribbons trapped by electric quantum dots
    Jakubsky, Vit
    Kuru, Sengul
    Negro, Javier
    PHYSICAL REVIEW B, 2022, 105 (16)
  • [10] Nanoribbons and nanofractals self-assembled from graphene quantum dots
    Qu, Zhi-Bei
    Feng, Weijie
    Kotov, Nicholas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253