Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications

被引:52
作者
Javaid, A. [1 ,2 ]
Ho, K. K. C. [1 ]
Bismarck, A. [1 ]
Steinke, J. H. G. [3 ]
Shaffer, M. S. P. [3 ]
Greenhalgh, E. S. [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, Polymer & Composite Engn PaCE Grp, London SW7 2AZ, England
[2] Univ Engn & Technol, Dept Polymer & Proc Engn, GT Rd, Lahore, Pakistan
[3] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AY, England
[4] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, Composite Ctr, London, England
关键词
Multifunctional composites; carbon fibres; supercapacitors; energy storage; electrical properties; mechanical properties; SOLID POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; PERFORMANCE; NANOCOMPOSITE; BATTERY; DESIGN; LIQUID;
D O I
10.1177/0021998315602324
中图分类号
TB33 [复合材料];
学科分类号
摘要
We have developed structural supercapacitors that can carry mechanical loads as well as can store electrochemical energy simultaneously. Structural supercapacitors are fabricated by impregnating carbon fibre mat electrodes and glass fibre mat separator with crosslinked poly(ethylene glycol) diglycidylether polymer electrolyte using the resin infusion under flexible tooling method. In this study, design parameters of the structural supercapacitors have been explored including the separators and the polymer electrolytes. The fabricated structural supercapacitors have been characterised using charge-discharge method and impedance spectroscopy to evaluate the electrochemical performance and in-plane shear properties to evaluate the mechanical performance. A structural supercapacitor, exhibiting a specific capacitance of 10.3 mF/cm(3) and a shear modulus of 0.50GPa simultaneously, have been fabricated.
引用
收藏
页码:2155 / 2163
页数:9
相关论文
共 45 条
[1]  
[Anonymous], 2007, D3518 ASTM INT
[2]  
[Anonymous], 1999, D3171 ASTM INT
[3]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[4]  
[Anonymous], 2011, FNMOL
[5]   Li+ ion conduction in TiO2 filled polyvinylidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB [J].
Aravindan, Vanchiappan ;
Vickraman, Palanisamy ;
Krishnaraj, Kaliappa .
CURRENT APPLIED PHYSICS, 2009, 9 (06) :1474-1479
[6]   Structural power composites [J].
Asp, Leif E. ;
Greenhalgh, Emile S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 101 :41-61
[7]  
ASTM D695, 2002, D695 ASTM INT
[8]   Investigation on lithium/polymer electrolyte interface for high performance lithium rechargeable batteries [J].
Borghini, MC ;
Mastragostino, M ;
Zanelli, A .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :52-58
[9]   New poly(ethylene oxide)-clay composites [J].
Chaiko, DJ .
CHEMISTRY OF MATERIALS, 2003, 15 (05) :1105-1110
[10]   PREPARATION AND CHARACTERIZATION OF POLY(VINYL-SULFONE)-BASED AND POLY(VINYLIDENE-FLUORIDE)-BASED ELECTROLYTES [J].
CHOE, HS ;
GIACCAI, J ;
ALAMGIR, M ;
ABRAHAM, KM .
ELECTROCHIMICA ACTA, 1995, 40 (13-14) :2289-2293