Properties of factorization operators in boundary crossing problems for random walks

被引:0
作者
Lotov, V., I [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
random walk; boundary crossing problems; Wiener-Hopf factorization;
D O I
10.1070/IM8808
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the properties of operators arising in the calculation of double Laplace-Stieltjes transforms of distributions in various boundary crossing problems for random walks. Such operators are defined in terms of the components of the Wiener-Hopf factorization. We give bounds for the norms of these operators and prove continuity theorems.
引用
收藏
页码:1050 / 1065
页数:16
相关论文
共 17 条
[1]  
Borisov IS, 2011, SIBERIAN MATH J+, V52, P602
[2]  
Borovkov A. A., 2016, SIBERIAN ADV MATH, V19, p[46, 231]
[3]  
Borovkov A. A., 2013, Probability Theory
[4]  
Borovkov A. A., 1962, SIB MAT ZH, V3, P645
[5]  
Borovkov AA, 1976, STOCHASTIC PROCESSES, V4
[6]  
Feller W., 1968, INTRO PROBABILITY TH
[7]  
FELLER W., 1971, An Introduction to Probability Theory and Its Applications, VII
[8]   A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM-WALK WITH A 2-SIDED BOUNDARY [J].
KEMPERMAN, JHB .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (04) :1168-&
[9]   ON THE ASYMPTOTICS OF THE DISTRIBUTION OF EXCESS [J].
Lotov, V. I. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 :292-299
[10]  
Lotov V. I., 1979, THEOR PROBAB APPL, V24, p[475, 480]