A 3D extension of pantographic geometries to obtain metamaterial with semi-auxetic properties

被引:16
作者
Stilz, Maximilian [1 ]
Plappert, David [1 ]
Gutmann, Florian [1 ,2 ]
Hiermaier, Stefan [1 ,2 ]
机构
[1] Albert Ludwigs Univ Freiburg, INATECH, Emmy Noether Str 2, D-79110 Freiburg, Germany
[2] Fraunhofer Ernst Mach Inst High Speed Dynam, Freiburg, Germany
关键词
auxetic; homogenization; metamaterial; pantographic structure; STRAIN-GRADIENT; ASYMPTOTIC HOMOGENIZATION; MATRIX REPRESENTATIONS; CONTINUUM MODEL; DISCRETE; SHEETS; IDENTIFICATION; DEFORMATIONS; FIBERS; BEAMS;
D O I
10.1177/10812865211033322
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we present a three-dimensional extension of pantographic structures and describe its properties after homogenization of the unit cell. Here we rely on a description involving only the first gradient of displacement, as the semi-auxetic property is effectively described by first-order stiffness terms. For a homogenization technique, discrete asymptotic expansion is used. The material shows two positive (0 <= nu(yx) , nu(yz) <= 1) and one negative Poisson's ratios (-1 >= nu(xz) >= 0). If, on the other hand, we assume inextensible Bernoulli beams and perfect pivots, we find a vanishing stiffness matrix, suggesting a purely higher gradient material.
引用
收藏
页码:673 / 686
页数:14
相关论文
共 43 条
  • [1] STRAIN GRADIENT AND GENERALIZED CONTINUA OBTAINED BY HOMOGENIZING FRAME LATTICES
    Abdoul-Anziz, Houssam
    Seppecher, Pierre
    [J]. MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2018, 6 (03) : 213 - 250
  • [2] HOMOGENIZATION OF NONLINEAR INEXTENSIBLE PANTOGRAPHIC STRUCTURES BY Γ-CONVERGENCE
    Alibert, Jean-Jacques
    Della Corte, Alessandro
    [J]. MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2019, 7 (01) : 1 - 24
  • [3] Truss modular beams with deformation energy depending on higher displacement gradients
    Alibert, JJ
    Seppecher, P
    Dell'Isola, F
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2003, 8 (01) : 51 - 73
  • [4] On the linear theory of micropolar plates
    Altenbach, Holm
    Eremeyev, Victor A.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (04): : 242 - 256
  • [5] Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity
    Auffray, N.
    He, Q. C.
    Le Quang, H.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 159 : 197 - 210
  • [6] Matrix representations for 3D strain-gradient elasticity
    Auffray, N.
    Le Quang, H.
    He, Q. C.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (05) : 1202 - 1223
  • [7] Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation
    Barchiesi, Emilio
    Eugster, Simon R.
    Dell'Isola, Francesco
    Hild, Francois
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (03) : 739 - 767
  • [8] Pantographic beam: a complete second gradient 1D-continuum in plane
    Barchiesi, Emilio
    Eugster, Simon R.
    Placidi, Luca
    dell'Isola, Francesco
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [9] Barchiesi E, 2018, ADV STRUCT MAT, V87, P43, DOI 10.1007/978-3-319-73694-5_4
  • [10] Bonet J, 2008, NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS, 2ND EDITION, P1