Rogue waves on the double-periodic background in the focusing nonlinear Schrodinger equation

被引:89
作者
Chen, Jinbing [1 ]
Pelinovsky, Dmitry E. [2 ,3 ]
White, Robert E. [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] McMaster Univ, Dept Math, Hamilton, ON L85 4K1, Canada
[3] RAS, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
FINITE-GAP METHOD; INTEGRABLE TURBULENCE; INSTABILITY; MODULATION; AMPLITUDES;
D O I
10.1103/PhysRevE.100.052219
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we characterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on the background of such solutions. Magnification of the rogue waves is studied numerically.
引用
收藏
页数:18
相关论文
共 42 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]   Integrable turbulence generated from modulational instability of cnoidal waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2016, 29 (11) :3551-3578
[3]   Integrable turbulence and formation of rogue waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2015, 28 (08) :2791-2821
[4]   Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Devine, N. .
PHYSICAL REVIEW E, 2016, 94 (02)
[5]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[6]   Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrodinger Equation [J].
Bertola, M. ;
Tovbis, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (02) :525-547
[7]   Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation [J].
Bertola, Marco ;
El, Gennady A. ;
Tovbis, Alexander .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194)
[8]  
Bilman D., 2018, ARXIV180600545
[9]   Large-Order Asymptotics for Multiple-Pole Solitons of the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Buckingham, Robert .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (05) :2185-2229
[10]   A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Miller, Peter D. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (08) :1722-1805