Simple graded rings of Siegel modular forms, differential operators and Borcherds products

被引:69
作者
Aoki, H [1 ]
Ibukiyama, T
机构
[1] Sci Univ Tokyo, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
[2] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
关键词
Siegel modular form; differential operator; Borcherds product;
D O I
10.1142/S0129167X05002837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the graded ring of Siegel modular forms of Gamma(0) (N) subset of Sp(2, Z) has a very simple unified structure for N = 1, 2, 3, 4, taking Neben-type case (the case with character) for N = 3 and 4. All are generated by 5 generators, and all the fifth generators axe obtained by using the other four by means of differential operators, and it is also obtained as Borcherds products. As an appendix, examples of Euler factors of L-functions of Siegel modular forms of Sp(2, Z) of odd weight are given.
引用
收藏
页码:249 / 279
页数:31
相关论文
共 11 条
[1]  
Andrianov A. N., 1974, USP MAT NAUK, V29, P45
[2]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[3]   Rankin-Cohen operators for Jacobi and Siegel forms [J].
Choie, Y ;
Eholzer, W .
JOURNAL OF NUMBER THEORY, 1998, 68 (02) :160-177
[4]   Rankin-Cohen type differential operators for Siegel modular forms [J].
Eholzer, W ;
Ibukiyama, T .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (04) :443-463
[5]   Automorphic forms and Lorentzian Kac-Moody algebras. Part II [J].
Gritsenko, VA ;
Nikulin, VV .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (02) :201-275
[6]   On the graded ring of Siegel modular forms of degree 2, level 3 [J].
Gunji, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (02) :375-403
[7]  
Ibukiyama T., 1999, COMMENT MATH U ST PA, V48, P103
[8]  
Ibukiyama T., 1991, INT J MATH, V2, P17, DOI [DOI 10.1142/S0129167X9100003X, 10.1142/S0129167X9100003X]
[9]   ON SIEGEL MODULAR FORMS OF GENUS 2 (2) [J].
IGUSA, J .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (02) :392-&
[10]   MODULAR FORMS AND PROJECTIVE INVARIANTS [J].
IGUSA, JI .
AMERICAN JOURNAL OF MATHEMATICS, 1967, 89 (03) :817-&