Pd-Co nanoparticles decorated on different carbon based substrates as electrocatalyst for O2 reduction reaction

被引:17
作者
Hosseini, Mir Ghasem [1 ,2 ]
Hosseinzadeh, F. [1 ]
Zardari, Parisa [1 ]
Darbandi, Masih [3 ]
机构
[1] Univ Tabriz, Dept Phys Chem, Electrochem Res Lab, Tabriz, Iran
[2] Near East Univ, Engn Fac, Dept Mat Sci & Nanotechnol, Mersin 10, TR-99138 Nicosia, North Cyprus, Turkey
[3] Univ Tabriz, Fac Chem, Dept Phys Chem, Nanomat Res Lab, Tabriz, Iran
关键词
Palladium; Cobalt; Oxygen reduction; Graphene; Multi-walled carbon nanotubes; OXYGEN-REDUCTION; EFFICIENT ELECTROCATALYST; CATALYSTS; PERFORMANCE; PALLADIUM; METHANOL; NANOTUBES; IMPEDANCE; GRAPHENE; NANOCOMPOSITE;
D O I
10.1016/j.ijhydene.2021.06.075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a facile process for the synthesis of bimetallic Pd-Co nanotubes on multi walled carbon nanotubes (MWCNTs) and chemically reduced graphene oxide (rGO) is reported. The synthesized nanocatalysts are characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). Catalysts are evaluated for the oxygen reduction reaction (ORR) in basic media. The electrocatalytic performance of Pd-Co supported on rGO and MWCNTs toward ORR is compared with bimetallic and single Pd nanoparticles decorated on Vulcan carbon (XC-72R) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and rotating disk electrode (RDE) in 0.1 M NaOH solution. The specific electrochemical surface areas of Pd-Co supported on rGO is higher than the corresponding carbon supported Pd nanoparticles (222.09 vs. 41.57 m(2) g(-1), respectively). The RDE results confirm that the final product of the oxygen reduction is water and the proposed main path is direct 4 electron transfer process with smooth transfer kinetic rate on the Pd-Co/rGO in comparison to Pd-Co/C. Furthermore, the lower charge transfer resistance of the particles in ORR process for the Pd-Co/rGO compared to single Pd/C catalyst, indicating it could be excellent candidate for ORR in alkaline media. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:28513 / 28526
页数:14
相关论文
共 57 条
[1]   Impedance study of the evolution of a HO2--generating hydrophobic gas diffusion electrode [J].
Alcaide, F ;
Brillas, E ;
Cabot, PL .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (10) :838-843
[2]   Pd supported on Ti-suboxides as bifunctional catalyst for air electrodes of metal-air batteries [J].
Alegre, C. ;
Modica, E. ;
Lo Vecchio, C. ;
Siracusano, S. ;
Arico, A. S. ;
Baglio, V. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (43) :19579-19586
[3]   Synthesis and performance of palladium-based catalysts for methanol and ethanol oxidation in alkaline fuel cells [J].
An, Hao ;
Pan, Linna ;
Cui, Hao ;
Li, Baojv ;
Zhou, Dandan ;
Zhai, Jianping ;
Li, Qin .
ELECTROCHIMICA ACTA, 2013, 102 :79-87
[4]  
[Anonymous], 2015, GRAPHENE BASE ENERGY
[5]  
[Anonymous], 2000, Electrochemical Methods Fundamentals And Applications
[6]   A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports [J].
Assumpcao, M. H. M. T. ;
De Souza, R. F. B. ;
Rascio, D. C. ;
Silva, J. C. M. ;
Calegaro, M. L. ;
Gaubeur, I. ;
Paixao, T. R. L. C. ;
Hammer, P. ;
Lanza, M. R. V. ;
Santos, M. C. .
CARBON, 2011, 49 (08) :2842-2851
[7]   Oxygen reduction reaction activity of Pd-based bimetallic electrocatalysts in alkaline medium [J].
Bampos, Georgios ;
Sygellou, Labrini ;
Bebelis, Symeon .
CATALYSIS TODAY, 2020, 355 :685-697
[8]  
Briggs D., 1981, HDB XRAY PHOTOELECTR
[9]   Performance of carbon-supported palladium and palladium ruthenium catalysts for alkaline membrane direct ethanol fuel cells [J].
Carrion-Satorre, S. ;
Montiel, M. ;
Escudero-Cid, R. ;
Fierro, J. L. G. ;
Fatas, E. ;
Ocon, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (21) :8954-8962
[10]   Selection of oxygen reduction catalysts for rechargeable lithium-air batteries-Metal or oxide? [J].
Cheng, H. ;
Scott, K. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 108 (1-2) :140-151