Generalized Holder Continuity and Oscillation Functions

被引:0
作者
Toth, Imre Peter [1 ,2 ]
机构
[1] MTA BME Stochast Res Grp, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Stochast, Budapest, Hungary
关键词
Holder continuity; Function oscillation; Regularisation; Supremum smoothing; BILLIARD FLOWS;
D O I
10.1007/s11040-018-9292-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a notion of generalized Holder continuity for functions on Rd. We show that for any bounded function f of bounded support and any r > 0, the r- oscillation of f defined as oscrf (x) := sup Br (x) f - infBr (x) f is automatically generalized Holder continuous, and we give an estimate for the appropriate (semi) norm. This is motivated by applications in the theory of dynamical systems.
引用
收藏
页数:18
相关论文
共 5 条
[1]  
[Anonymous], 2014, Geometric Measure Theory. Classics in Mathematics
[2]   Equidistribution for Standard Pairs in Planar Dispersing Billiard Flows [J].
Balint, Peter ;
Nandori, Peter ;
Szasz, Domokos ;
Toth, Imre Peter .
ANNALES HENRI POINCARE, 2018, 19 (04) :979-1042
[3]   A stretched exponential bound on time correlations for billiard flows [J].
Chernov, N. .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (01) :21-50
[4]   GENERALIZED BOUNDED VARIATION AND APPLICATIONS TO PIECEWISE MONOTONIC TRANSFORMATIONS [J].
KELLER, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (03) :461-478
[5]   Absolutely continuous invariant measures for multidimensional expanding maps [J].
Saussol, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 116 (1) :223-248