High-temperature and high-energy-density polymer dielectrics for capacitive energy storage

被引:0
|
作者
Zhou, Yao [1 ]
Li, Qi [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Kay Lab Power Syst, Beijing 100084, Peoples R China
基金
北京市自然科学基金;
关键词
Capacitors; energy storage; dielectric properties; high temperature; CHARGE-DISCHARGE EFFICIENCY; NANOCOMPOSITES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-temperature and high-energy-density polymer dielectrics for capacitive energy storage are critical in capacitors orient to harsh-environment application. The dielectric properties of poly(tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride) (THV) terpolymer are investigated in a broad temperature range. It was found that the thermal stability of the THV terpolymer is significantly improved and a melting temperature of 226 degrees C can be achieved. Due to the higher dielectric constant of 3.6, the THV terpolymer shows 64% higher discharged energy density compared with BOPP. Its high melting temperature, low leakage current, high discharged energy density and high charge-discharge efficiency make THV potentially to be used as dielectric films for high-temperature and high-energy-density capacitive energy storage application.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] High-temperature and high-energy-density polymer dielectrics for capacitive energy storage
    Zhou, Yao
    Li, Qi
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [2] High-Energy-Density and High Efficiency Polymer Dielectrics for High Temperature Electrostatic Energy Storage: A Review
    Yang, Minzheng
    Ren, Weibin
    Guo, Mengfan
    Shen, Yang
    SMALL, 2022, 18 (50)
  • [3] High-temperature polymer dielectrics with superior capacitive energy storage performance
    Qin, Hongmei
    Song, Jinhui
    Liu, Man
    Zhang, Yibo
    Qin, Shiyu
    Chen, Hang
    Shen, Kangdi
    Wang, Shan
    Li, Qi
    Yang, Quanling
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [4] Advanced polymer dielectrics for high temperature capacitive energy storage
    Zhou, Yao
    Wang, Qing
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (24)
  • [5] Surface Strengthening of Polymer Composite Dielectrics for Superior High-Temperature Capacitive Energy Storage
    Wang, Zepeng
    Zhao, Yanlong
    Yang, Minhao
    Yan, Huarui
    Xu, Chao
    Tian, Bobo
    Zhang, Chong
    Xie, Qing
    Dang, Zhi-Min
    ADVANCED ENERGY MATERIALS, 2025,
  • [6] Anisotropic Semicrystalline Homopolymer Dielectrics for High-Temperature Capacitive Energy Storage
    Xu, Wenhan
    Zhou, Chenyi
    Ji, Wenhai
    Zhang, Yunhe
    Jiang, Zhenhua
    Bertram, Florian
    Shang, Yingshuang
    Zhang, Haibo
    Shen, Chen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (24)
  • [7] Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage
    Wang, Rui
    Zhu, Yujie
    Fu, Jing
    Yang, Mingcong
    Ran, Zhaoyu
    Li, Junluo
    Li, Manxi
    Hu, Jun
    He, Jinliang
    Li, Qi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage
    Rui Wang
    Yujie Zhu
    Jing Fu
    Mingcong Yang
    Zhaoyu Ran
    Junluo Li
    Manxi Li
    Jun Hu
    Jinliang He
    Qi Li
    Nature Communications, 14
  • [9] Unifying and Suppressing Conduction Losses of Polymer Dielectrics for Superior High-Temperature Capacitive Energy Storage
    Yang, Minhao
    Wang, Zepeng
    Zhao, Yanlong
    Liu, Zeren
    Pang, Hui
    Dang, Zhi-Min
    ADVANCED MATERIALS, 2023,
  • [10] Rationally designed high-temperature polymer dielectrics for capacitive energy storage: An experimental and computational alliance
    Aklujkar, Pritish S.
    Gurnani, Rishi
    Rout, Pragati
    Khomane, Ashish R.
    Mutegi, Irene
    Desai, Mohak
    Pollock, Amy
    Toribio, John M.
    Hao, Jing
    Cao, Yang
    Ramprasad, Rampi
    Sotzing, Gregory
    PROGRESS IN POLYMER SCIENCE, 2025, 161