Predicting rogue waves in random oceanic sea states

被引:54
作者
Islas, AL [1 ]
Schober, CM [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
D O I
10.1063/1.1872093
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using the inverse spectral theory of the nonlinear Schrodinger (NLS) equation we correlate the development of rogue waves in oceanic sea states characterized by the Joint North Sea Wave Project (JONSWAP) spectrum with the proximity to homoclinic solutions of the NLS equation. We find in numerical simulations of the NLS equation that rogue waves develop for JONSWAP initial data that are "near" NLS homoclinic data, while rogue waves do not occur for JONSWAP data that are "far" from NLS homoclinic data. We show the nonlinear spectral decomposition provides a simple criterium for predicting the occurrence and strength of rogue waves. (C) 2005 American Institute of Physics.
引用
收藏
页码:031701 / 1
页数:4
相关论文
共 10 条
[1]   Long-time dynamics of the modulational instability of deep water waves [J].
Ablowitz, MJ ;
Hammack, J ;
Henderson, D ;
Schober, CM .
PHYSICA D, 2001, 152 :416-433
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[3]   Homoclinic chaos increases the likelihood of rogue wave formation [J].
Calini, A ;
Schober, CM .
PHYSICS LETTERS A, 2002, 298 (5-6) :335-349
[4]   GEOMETRY OF THE MODULATIONAL INSTABILITY .3. HOMOCLINIC ORBITS FOR THE PERIODIC SINE-GORDON EQUATION [J].
ERCOLANI, N ;
FOREST, MG ;
MCLAUGHLIN, DW .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :349-384
[5]   Physical mechanisms of the rogue wave phenomenon [J].
Kharif, C ;
Pelinovsky, E .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2003, 22 (06) :603-634
[6]  
OLAGNON M, 2001, ROGUE WAVES 2000, V32
[7]   Freak waves in random oceanic sea states [J].
Onorato, M ;
Osborne, AR ;
Serio, M ;
Bertone, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (25) :5831-5834
[8]   The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains [J].
Osborne, AR ;
Onorato, M ;
Serio, M .
PHYSICS LETTERS A, 2000, 275 (5-6) :386-393
[9]   A modified nonlinear Schrodinger equation for broader bandwidth gravity waves on deep water [J].
Trulsen, K ;
Dysthe, KB .
WAVE MOTION, 1996, 24 (03) :281-289
[10]   On weakly nonlinear modulation of waves on deep water [J].
Trulsen, K ;
Kliakhandler, I ;
Dysthe, KB ;
Velarde, MG .
PHYSICS OF FLUIDS, 2000, 12 (10) :2432-2437