Development and validation of risk models to predict the 7-year risk of type 2 diabetes: The Japan Epidemiology Collaboration on Occupational Health Study

被引:16
作者
Hu, Huanhuan [1 ]
Nakagawa, Tohru [2 ]
Yamamoto, Shuichiro [2 ]
Honda, Toru [2 ]
Okazaki, Hiroko [3 ]
Uehara, Akihiko [4 ]
Yamamoto, Makoto [5 ]
Miyamoto, Toshiaki [6 ]
Kochi, Takeshi [7 ]
Eguchi, Masafumi [7 ]
Murakami, Taizo [8 ]
Shimizu, Makiko [8 ]
Tomita, Kentaro [9 ]
Nagahama, Satsue [10 ]
Imai, Teppei [11 ]
Nishihara, Akiko [11 ]
Sasaki, Naoko [12 ]
Ogasawara, Takayuki [12 ]
Hori, Ai [13 ]
Nanri, Akiko [1 ,14 ]
Akter, Shamima [1 ]
Kuwahara, Keisuke [1 ,15 ]
Kashino, Ikuko [1 ]
Kabe, Isamu [7 ]
Mizoue, Tetsuya [1 ]
Sone, Tomofumi [16 ]
Dohi, Seitaro [3 ]
机构
[1] Natl Ctr Global Hlth & Med, Dept Epidemiol & Prevent, Tokyo, Japan
[2] Hitachi Ltd, Ibaraki, Japan
[3] Mitsui Chem Inc, Tokyo, Japan
[4] Seijinkai Shizunai Hosp, Shinhidaka, Hokkaido, Japan
[5] Yamaha Corp, Shizuoka, Japan
[6] Nippon Steel & Sumitomo Met Corp Kimitsu Works, Chiba, Japan
[7] Furukawa Elect Corp Ltd, Tokyo, Japan
[8] Keihin Occupat Hlth Ctr, Mizue Med Clin, Kawasaki, Kanagawa, Japan
[9] Mitsubishi Plast Inc, Tokyo, Japan
[10] All Japan Labor Welf Fdn, Tokyo, Japan
[11] Azbil Corp, Tokyo, Japan
[12] Mitsubishi Fuso Truck & Bus Corp, Kawasaki, Kanagawa, Japan
[13] Univ Tsukuba, Dept Global Publ Hlth, Ibaraki, Japan
[14] Fukuoka Womens Univ, Dept Food & Hlth Sci, Fukuoka, Japan
[15] Teikyo Univ, Grad Sch Publ Hlth, Tokyo, Japan
[16] Natl Inst Publ Hlth, Saitama, Japan
基金
日本学术振兴会;
关键词
Japanese; Risk model; Type; 2; diabetes; SCORE; DERIVATION;
D O I
10.1111/jdi.12809
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/IntroductionWe previously developed a 3-year diabetes risk score in the working population. The objective of the present study was to develop and validate flexible risk models that can predict the risk of diabetes for any arbitrary time-point during 7 years. Materials and MethodsThe participants were 46,198 Japanese employees aged 30-59 years, without diabetes at baseline and with a maximum follow-up period of 8 years. Incident diabetes was defined according to the American Diabetes Association criteria. With routine health checkup data (age, sex, abdominal obesity, body mass index, smoking status, hypertension status, dyslipidemia, glycated hemoglobin and fasting plasma glucose), we developed non-invasive and invasive risk models based on the Cox proportional hazards regression model among a random two-thirds of the participants, and used another one-third for validation. ResultsThe range of the area under the receiver operating characteristic curve increased from 0.73 (95% confidence interval 0.72-0.74) for the non-invasive prediction model to 0.89 (95% confidence interval 0.89-0.90) for the invasive prediction model containing dyslipidemia, glycated hemoglobin and fasting plasma glucose. The invasive models showed improved integrated discrimination and reclassification performance, as compared with the non-invasive model. Calibration appeared good between the predicted and observed risks. These models performed well in the validation cohort. ConclusionsThe present non-invasive and invasive models for the prediction of diabetes risk up to 7 years showed fair and excellent performance, respectively. The invasive models can be used to identify high-risk individuals, who would benefit greatly from lifestyle modification for the prevention or delay of diabetes.
引用
收藏
页码:1052 / 1059
页数:8
相关论文
共 21 条
[1]   Introduction [J].
不详 .
DIABETES CARE, 2015, 38 :S1-S2
[2]  
[Anonymous], 2015, IDF Diabetes Atlas, V7
[3]  
[Anonymous], 2002, ETH GUID EP RES
[4]   Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes [J].
Buijsse, Brian ;
Simmons, Rebecca K. ;
Griffin, Simon J. ;
Schulze, Matthias B. .
EPIDEMIOLOGIC REVIEWS, 2011, 33 (01) :46-62
[5]   Impact of population aging on trends in diabetes prevalence: A meta-regression analysis of 160,000 Japanese adults [J].
Charvat, Hadrien ;
Goto, Atsushi ;
Goto, Maki ;
Inoue, Machiko ;
Heianza, Yoriko ;
Arase, Yasuji ;
Sone, Hirohito ;
Nakagami, Tomoko ;
Song, Xin ;
Qiao, Qing ;
Tuomilehto, Jaakko ;
Tsugane, Shoichiro ;
Noda, Mitsuhiko ;
Inoue, Manami .
JOURNAL OF DIABETES INVESTIGATION, 2015, 6 (05) :533-542
[6]   An independent and external validation of QRISK2 cardiovascular disease risk score: a prospective open cohort study [J].
Collins, Gary S. ;
Altman, Douglas G. .
BMJ-BRITISH MEDICAL JOURNAL, 2010, 340 :1231
[7]   Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve [J].
Cook, Nancy R. .
CLINICAL CHEMISTRY, 2008, 54 (01) :17-23
[8]   Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials [J].
Costa, Francesco ;
van Klaveren, David ;
James, Stefan ;
Heg, Dik ;
Raber, Lorenz ;
Feres, Fausto ;
Pilgrim, Thomas ;
Hong, Myeong-Ki ;
Kim, Hyo-Soo ;
Colombo, Antonio ;
Steg, Philippe Gabriel ;
Zanchin, Thomas ;
Palmerini, Tullio ;
Wallentin, Lars ;
Bhatt, Deepak L. ;
Stone, Gregg W. ;
Windecker, Stephan ;
Steyerberg, Ewout W. ;
Valgimigli, Marco .
LANCET, 2017, 389 (10073) :1025-1034
[9]   Two risk score models for predicting incident Type 2 diabetes in Japan [J].
Doi, Y. ;
Ninomiya, T. ;
Hata, J. ;
Hirakawa, Y. ;
Mukai, N. ;
Iwase, M. ;
Kiyohara, Y. .
DIABETIC MEDICINE, 2012, 29 (01) :107-114
[10]   Revised Framingham Stroke Risk Profile to Reflect Temporal Trends [J].
Dufouil, Carole ;
Beiser, Alexa ;
McLure, Leslie A. ;
Wolf, Philip A. ;
Tzourio, Christophe ;
Howard, Virginia J. ;
Westwood, Andrew J. ;
Himali, Jayandra J. ;
Sullivan, Lisa ;
Aparicio, Hugo J. ;
Kelly-Hayes, Margaret ;
Ritchie, Karen ;
Kase, Carlos S. ;
Pikula, Aleksandra ;
Romero, Jose R. ;
D'Agostino, Ralph B. ;
Samieri, Cecilia ;
Vasan, Ramachandran S. ;
Chene, Genevieve ;
Howard, George ;
Seshadri, Sudha .
CIRCULATION, 2017, 135 (12) :1145-1159