Lie algebraic approach to the construction of (2+1)-dimensional lattice-field and field integrable Hamiltonian equations

被引:38
作者
Blaszak, M [1 ]
Szum, A [1 ]
机构
[1] Adam Mickiewicz Univ, Dept Phys, PL-61614 Poznan, Poland
关键词
D O I
10.1063/1.1324651
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two different methods for the construction of (2 + 1)-dimensional integrable lattice-field and field Hamiltonian dynamical systems are presented. The first method is based on the so-called central extension procedure applied to the Lie algebra of shift operators and the Lie algebra of pseudodifferential operators. The second method is the so-called operand formalism. Both methods allow a construction of some new integrable nonlinear Hamiltonian lattice-field and field equations in (2 + 1)-dimensional space. (C) 2001 American Institute of Physics.
引用
收藏
页码:225 / 259
页数:35
相关论文
共 42 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]  
[Anonymous], 1985, ASTERISQUE
[3]   THE HAMILTONIAN-STRUCTURE OF THE (2+1)-DIMENSIONAL ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY [J].
ATHORNE, C ;
DORFMAN, IY .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) :3507-3517
[4]  
Berezin F.A., 1967, Funct. Anal. Appl, V1, P91, DOI 10.1007/BF01076082
[5]   R-MATRIX APPROACH TO LATTICE INTEGRABLE SYSTEMS [J].
BLASZAK, M ;
MARCINIAK, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4661-4682
[6]   Central extension approach to integrable field and lattice-field systems in (2+1)-dimensions [J].
Blaszak, M ;
Szum, A ;
Prykarpatsky, A .
REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) :37-44
[7]  
Blaszak M., 1997, REP MATH PHYS, V40, P395
[8]  
BLASZAK M, 2000, AM MATH SOC MEM, V25, P23
[9]  
BLASZAK M, 1998, MULTIHAMILTONIAN THE
[10]   HAMILTONIAN THEORY OVER NONCOMMUTATIVE RINGS AND INTEGRABILITY IN MULTIDIMENSIONS [J].
DORFMAN, IY ;
FOKAS, AS .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) :2504-2514