NULL CONTROLLABILITY FOR A CLASS OF SEMILINEAR DEGENERATE/SINGULAR PARABOLIC EQUATIONS

被引:0
作者
Cung The Anh [1 ]
Vu Manh Toi [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Hanoi Water Resources Univ, Fac Comp Sci & Engn, Hanoi, Vietnam
来源
FIXED POINT THEORY | 2015年 / 16卷 / 01期
关键词
semilinear degenerate/singular parabolic equation; null controllability; Carleman estimates; Hardy-Poincare type inequality; fixed point; HEAT-EQUATION; APPROXIMATE CONTROLLABILITY; UNBOUNDED-DOMAINS; POTENTIALS; NONLINEARITIES; OPERATORS; GRADIENT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the null controllability results for a class of semilinear degenerate/singular one-dimensional parabolic equations. The proof is based on Schauder's fixed point theorem.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 30 条
[1]   Carleman estimates for degenerate parabolic operators with applications to null controllability [J].
Alabau-Boussouira, F. ;
Cannarsa, P. ;
Fragnelli, G. .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :161-204
[2]  
Anh C.T., APPROXIMATE CO UNPUB
[3]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[4]  
Bebernes J, 1989, MATH SCI, V83
[5]  
Buchot JM, 2002, INT S NUM M, V139, P31
[6]   Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms [J].
Cabanillas, VR ;
De Menezes, SB ;
Zuazua, E .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 110 (02) :245-264
[7]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978
[8]   Carleman estimates for a class of degenerate parabolic operators [J].
Cannarsa, P. ;
Martinez, P. ;
Vancostenoble, J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) :1-19
[9]  
Cannarsa P, 2005, ADV DIFFERENTIAL EQU, V10, P153
[10]   Regional controllability of semilinear degenerate parabolic equations in bounded domains [J].
Cannarsa, P. ;
Fragnelli, G. ;
Vancostenoble, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) :804-818