Basic propositional calculus I

被引:49
作者
Ardeshir, M
Ruitenburg, W
机构
[1] Sharif Univ Technol, Dept Math, Tehran, Iran
[2] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
关键词
constructive propositional logic; Kripke models;
D O I
10.1002/malq.19980440304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an axiomatization for Basic Propositional Calculus BPC and give a completeness theorem for the class of transitive Kripke structures. We present several refinements, including a completeness theorem for irreflexive trees. The class of intermediate logics includes two maximal nodes, one being Classical Propositional Calculus CPC, the other being E-1, a theory axiomatized by T --> perpendicular to. The intersection CPC boolean AND E-1 is axiomatizable by the Principle of the Excluded Middle A boolean OR inverted left perpendicular A. If B is a formula such that (T --> B) --> B is not derivable, then the lattice of formulas built from one propositional variable p using only the binary connectives, is isomorphically preserved if B is substituted for p. A formula (T --> B) --> B is derivable exactly when B is provably equivalent to a formula of the form ((T --> A) --> A) --> (T --> A).
引用
收藏
页码:317 / 343
页数:27
相关论文
共 9 条
[1]  
[Anonymous], MODERN LOGIC
[2]  
ARDESHIR M, 1995, THESIS MARQUETTE MIL
[3]  
Boolos G., 1979, UNPROVABILITY CONSIS
[4]  
Kripke S., 1959, J SYMBOLIC LOGIC, V24, P1, DOI DOI 10.2307/2964568
[5]  
Makinson D., 1971, Notre Dame Journal of Formal Logic, V12, P252, DOI 10.1305/ndjfl/1093894226
[6]  
RUITENBURG W, 1993, DIRK DALEN FESTSCHRI, V5, P121
[7]  
SEGERBERG K, 1970, THEORIA, V36, P301
[8]  
Smorynski C., 1985, SELF REFERENCE MODAL
[9]  
Visser A., 1981, STUDIA LOGICA, V40, P155, DOI 10.1007/BF01874706