Lattice ordered effect algebras

被引:0
作者
Sykes, SR [1 ]
机构
[1] Univ W Georgia, Dept Math, Carrollton, GA 30117 USA
关键词
lattice order; effect algebra; orthoalgebra;
D O I
10.1007/s00012-003-2500-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to discuss some structural properties of lattice ordered effect algebras. We will use these structural properties to find certain lattices and classes of lattices that do not admit an effect algebra structure. Filially, using these structural properties, we will show that if L is the face lattice of a convex polytope in R-3 with more than 3 vertices, then L does riot admit, an effect, algebra structure.
引用
收藏
页码:191 / 199
页数:9
相关论文
共 8 条
[1]   Interval and scale effect algebras [J].
Bennett, MK ;
Foulis, DJ .
ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (02) :200-215
[2]   Phi-symmetric effect algebras [J].
Bennett, MK ;
Foulis, DJ .
FOUNDATIONS OF PHYSICS, 1995, 25 (12) :1699-1722
[3]  
Birkhoff G, 1967, Lattice Theory, V3
[4]  
DVURECENSKIJ A, DTEST SPACES DIFFERE
[5]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352
[6]  
FOULIS DJ, 1992, INT J THEORETICAL PH, V31, P798
[7]   THE CENTER OF AN EFFECT ALGEBRA [J].
GREECHIE, RJ ;
FOULIS, D ;
PULMANNOVA, S .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1995, 12 (01) :91-106
[8]   Finite modular effect algebras [J].
Sykes, SR .
ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (02) :240-250