Increased Productivity and Antifreeze Activity of Ice-binding Protein from Flavobacterium frigoris PS1 Produced using Escherichia coli as Bioreactor

被引:7
作者
Kim, E. J. [1 ,2 ]
Kim, J. E. [1 ,3 ]
Hwang, J. S. [2 ,4 ]
Kim, I-C [1 ]
Lee, S. G. [2 ,4 ]
Kim, S. [1 ]
Lee, J. H. [2 ,4 ]
Han, S. J. [1 ,2 ]
机构
[1] KIOST, Div Polar Life Sci, Korea Polar Res Inst, Incheon 21990, South Korea
[2] Univ Sci & Technol, Dept Polar Sci, Incheon 21990, South Korea
[3] Sungkyunkwan Univ, Grad Sch, Dept Pharm, Suwon 16419, South Korea
[4] Polar Res Inst, Unit Polar Genom, Incheon 21990, South Korea
关键词
Antarctica; ice-binding protein; Flavobacterium frigoris; pilot-scale fermentation; thermal hysteresis; RECRYSTALLIZATION INHIBITION; ANTARCTIC BACTERIUM; CRYOPRESERVATION;
D O I
10.1134/S0003683819050077
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Ice-binding proteins (IBPs) inhibit the growth and recrystallization of intracellular ice, enabling polar organisms to survive at subzero temperatures. IBPs are promising materials in biomedical applications such as cryopreservation and the hypothermic storage of cells, tissues, and organs. In this study, recombinant IBP from the antarctic bacterium Flavobacterium frigoris PS1 (FfIBP) was produced by Escherichia coli used as bioreactor, to examine the feasibility of scale-up. Oxygen transfer was the most important factor influencing cell growth and FfIBP production during pilot-scale fermentation. The final yield of recombinant FfIBP produced by E. coli harboring the pET28a-FfIBP vector system was 1.6 g/L, 3.8-fold higher than that from the previously published report using pCold I-FfIBP vector system, and its thermal hysteresis activity was 2.5 degrees C at 9.7 mu M. This study demonstrates the successful pilot-scale production of FfIBP.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 33 条
[11]   Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions [J].
Doxey, Andrew C. ;
Yaish, Mahmoud W. ;
Griffith, Marilyn ;
McConkey, Brendan J. .
NATURE BIOTECHNOLOGY, 2006, 24 (07) :852-855
[12]   Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharides [J].
Dreischmeier, Katharina ;
Budke, Carsten ;
Wiehemeier, Lars ;
Kottke, Tilman ;
Koop, Thomas .
SCIENTIFIC REPORTS, 2017, 7
[13]   Antifreeze proteins in Alaskan insects and spiders [J].
Duman, JG ;
Bennett, V ;
Sformo, T ;
Hochstrasser, R ;
Barnes, BM .
JOURNAL OF INSECT PHYSIOLOGY, 2004, 50 (04) :259-266
[14]   Effect of temperature on in vivo protein synthetic capacity in Escherichia coli [J].
Farewell, A ;
Neidhardt, FC .
JOURNAL OF BACTERIOLOGY, 1998, 180 (17) :4704-4710
[15]   Demonstration of antifreeze protein activity in Antarctic lake bacteria [J].
Gilbert, JA ;
Hill, PJ ;
Dodd, CER ;
Laybourn-Parry, J .
MICROBIOLOGY-SGM, 2004, 150 :171-180
[16]   Antifreeze proteins in overwintering plants: a tale of two activities [J].
Griffith, M ;
Yaish, MWF .
TRENDS IN PLANT SCIENCE, 2004, 9 (08) :399-405
[17]   Crystal Structure of an Insect Antifreeze Protein and Its Implications for Ice Binding [J].
Hakim, Aaron ;
Nguyen, Jennifer B. ;
Basu, Koli ;
Zhu, Darren F. ;
Thakral, Durga ;
Davies, Peter L. ;
Isaacs, Farren J. ;
Modis, Yorgo ;
Meng, Wuyi .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (17) :12295-12304
[18]  
Hoshino T, 2003, CAN J BOT, V81, P1175, DOI [10.1139/b03-116, 10.1139/B03-116]
[19]   Ice-binding proteins from sea ice diatoms (Bacillariophyceae) [J].
Janech, MG ;
Krell, A ;
Mock, T ;
Kang, JS ;
Raymond, JA .
JOURNAL OF PHYCOLOGY, 2006, 42 (02) :410-416
[20]   Scale-up methodologies for Eseheriehia coli and yeast fermentation processes [J].
Junker, BH .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2004, 97 (06) :347-364