Asymptotic behavior of the unbounded solutions to some degenerate boundary layer equations revisited

被引:1
作者
Guedda, M.
Kersner, R.
机构
[1] Univ Picardie Jules Verne, Fac Math & Informat, CNRS, UMR 6140, FR-80039 Amiens, France
[2] Univ Pecs, PMMF, Dept Math, H-7624 Pecs, Hungary
关键词
boundary-layer; non-Newtonian fluids; degenerate differential equation; asymptotic behavior;
D O I
10.1007/s00013-007-1933-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We reconsider the boundary-layer flow of a non-Newtonian fluid corresponding to the classical Ostwald de Waele power-law model. The physical problem can be described in terms of solutions of the degenerate differential equation (vertical bar f ''vertical bar(n-1) f '')' + ff '' - beta f'(2) = 0, posed on the interval (0,infinity), in which beta < 0 and the real number (the power law index) n >= 1. This paper deals with the asymptotic behavior of any global unbounded solution; that is a solution satisfying lim(eta ->infinity) vertical bar f(n)vertical bar = infinity.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 13 条
[1]   MOMENTUM AND HEAT TRANSFER IN LAMINAR BOUNDARY-LAYER FLOWS OF NON-NEWTONIAN FLUIDS PAST EXTERNAL SURFACES [J].
ACRIVOS, A ;
SHAH, MJ ;
PETERSEN, EE .
AICHE JOURNAL, 1960, 6 (02) :312-317
[2]  
BENLAHSEN M, UNPUB GEN BLASIUS EQ
[3]  
Blasius H., 1908, Z Math Physik, V56, P1
[4]   Asymptotic behavior of the unbounded solutions of some boundary layer equations [J].
Brighi, B ;
Hoernel, JD .
ARCHIV DER MATHEMATIK, 2005, 85 (02) :161-166
[5]   On the boundary-layer equations for power-law fluids [J].
Denier, JP ;
Dabrowski, PP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2051) :3143-3158
[6]   Similarity solutions for free convection to power-law fluids from a heated vertical plate [J].
Ece, MC ;
Büyük, E .
APPLIED MATHEMATICS LETTERS, 2002, 15 (01) :1-5
[7]  
Filipussi D, 2001, NUOVO CIMENTO B, V116, P393
[8]   Similarity solutions of differential equations for boundary layer approximations in porous media [J].
Guedda, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (05) :749-762
[9]  
GUEDDA M, IN PRESS SIMILARITY
[10]  
Guedda M, 2007, HBK DIFF EQUAT STATI, V4, P117, DOI 10.1016/S1874-5733(07)80006-4